使用caffe的python接口实现内部参数可视化

来源:互联网 发布:大趋势炒股软件 编辑:程序博客网 时间:2024/05/16 13:04

1。这里并不介绍如何训练cnn及caffe配置,主要介绍如何实现cnn内部参数可视化。

#这是我训练时使用的train.prototxt文件,在实现可视化之前首先需要对这个文件进行修改,#trian.prototxt文件的前2层及尾部需要修改,修改成train_deploy.prototxt文件。name: "face_train"layer {  name: "face"  type: "Data"  top: "data"  top: "label"  data_param {    source: "train_lmdb"    batch_size: 100    backend:LMDB    }  transform_param {     scale: 0.00390625     mirror: true      }  include: {     phase: TRAIN   }}layer {  name: "face"  type: "Data"  top: "data"  top: "label"  include {    phase: TEST  }  transform_param {    scale: 0.00390625  }  data_param {    source: "val_lmdb"    batch_size: 100     backend: LMDB  }}layer {  name: "conv1"  type: "Convolution"  bottom: "data" ........... ........... ...........layer {  name: "ip1"  type:  "InnerProduct"  bottom: "contact_conv"  top: "ip1"  param {    name: "fc6_w"    lr_mult: 1    decay_mult: 1  }  param {    name: "fc6_b"    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 160    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 0.1    }}layer {  name: "ip2"  type:  "InnerProduct"  bottom: "ip1"  top: "ip2"  param {    lr_mult: 1    decay_mult: 1  }  param {    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 200    weight_filler {      type: "gaussian"      std: 0.01    }    bias_filler {      type: "constant"      value: 0    }  }}layer {  name: "accuracy"  type:  "Accuracy"  bottom: "ip2"  bottom: "label"  top: "accuracy"  include: {     phase: TEST   }}layer {  name: "loss"  type:  "SoftmaxWithLoss"  bottom: "ip2"  bottom: "label"  top: "loss"}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115

修改后的train_deploy.prototxt,我这里只需要ip1输出的数据,故删除了ip2及后面所有的层,若需要输出概率,可以先把ip2后的层删除,再添加个softmax层

#train_deploy.prototxtname: "face_train"input: "data"input_dim: 1 #图像个数input_dim: 3 #通道数input_dim: 128input_dim: 128layer {  name: "conv1"  type: "Convolution"  bottom: "data"  .......  .......  ....... layer {  name: "ip1"  type:  "InnerProduct"  bottom: "contact_conv"  top: "ip1"  param {    name: "fc6_w"    lr_mult: 1    decay_mult: 1  }  param {    name: "fc6_b"    lr_mult: 2    decay_mult: 0  }  inner_product_param {    num_output: 160    weight_filler {      type: "gaussian"      std: 0.005    }    bias_filler {      type: "constant"      value: 0.1    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  1. train_deploy文件已创建好,现在是python时间,这里我是在jupyter notebook进行python编程,如果不是在jupyter notebook中运算的话,%matplotlib inline会报错,请先配置好jupyter notebook,这个非常好用
import numpy as npimport matplotlib.pyplot as pltimport os,sys,caffe%matplotlib inlinecaffe_root='/home/chen/Downloads/caffe-master/'os.chdir(caffe_root)sys.path.insert(0,caffe_root+'python')#加载测试图片,并显示#caffe.io.load_image会把读取的图像转化为float32,并归一化im = caffe.io.load_image('examples/images/image/test_000000-000008.jpg')print im.shapeplt.imshow(im)plt.axis('off')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

这里写图片描述

#im的shape是(128,128,3),我们要把它转换成(1,3,128,128)X=np.empty((1,3,128,128))X[0,0,:,:]=im[:,:,0]X[0,1,:,:]=im[:,:,1]X[0,2,:,:]=im[:,:,2]caffe.set_mode_gpu()#加载网络模型和caffemodelnet = caffe.Net(caffe_root + 'examples/images/train2_deploy.prototxt',                caffe_root + 'examples/images/face3_iter_40000.caffemodel',                caffe.TEST)#将图像数据加载到网络中net.blobs['data'].data[...] = X #运行测试模型,并显示各层数据信息net.forward()[(k, v.data.shape) for k, v in net.blobs.items()]     
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

上面加载数据到网络时并没有减去均值,因为我这里并没有使用均值。 
这里写图片描述

# 编写一个函数,用于显示各层数据def show_data(Inputdata, padsize=1, padval=0):    data=Inputdata    for i in range(data.shape[1]):        data[0,i] -= data[0,i].min()        data[0,i]/= data[0,i].max()    # force the number of filters to be square    n = int(np.ceil(np.sqrt(data.shape[0])))    padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))    # tile the filters into an image    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])    plt.figure()    plt.imshow(data,cmap='gray')    plt.axis('off')plt.rcParams['figure.figsize'] = (8, 8)plt.rcParams['image.interpolation'] = 'nearest'plt.rcParams['image.cmap'] = 'gray'# 编写一个函数,用于显示各层数据def show_data2(Inputdata, padsize=1, padval=0):    data=Inputdata    # force the number of filters to be square    n = int(np.ceil(np.sqrt(data.shape[0])))    padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))    # tile the filters into an image    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])    plt.figure()    plt.imshow(data,cmap='gray')    plt.axis('off')plt.rcParams['figure.figsize'] = (8, 8)plt.rcParams['image.interpolation'] = 'nearest'plt.rcParams['image.cmap'] = 'gray'#显示conv1输出图像 show_data(net.blobs['conv1'].data[0])   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

这里写图片描述

#显示conv2输出图像show_data(net.blobs['conv2'].data[0])
  • 1
  • 2
  • 1
  • 2

这里写图片描述

##显示各层的参数信息[(k, v[0].data.shape) for k, v in net.params.items()]
  • 1
  • 2
  • 1
  • 2

这里写图片描述

#显示conv1所用卷积核show_data2(net.params['conv1'][0].data.reshape(20*3,3,3))
  • 1
  • 2
  • 1
  • 2

这里写图片描述

#显示conv2所用卷积核show_data2(net.params['conv2'][0].data.reshape(40*20,4,4))
  • 1
  • 2
  • 1
  • 2

这里写图片描述

#我这里只是用CNN提取特征,故只需要ip1输出的160维向量,#如果需要计算概率可以在后面加上一个softmax层out=net.blobs['ip1'].dataout.shape
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

这里写图片描述

3.总结 
训练好网络,再提取出160维的特征。至此完成内部参数可视化和模型调用,那2个显示函数是用的别人的,会使用OpenCV的朋友可以自己写一个更好的函数来使用。我这里就偷下懒了,后面会考虑自己写个显示的函数。 
有些朋友可能训练时使用了均值文件,请点这里 http://www.cnblogs.com/denny402/p/5105911.html

0 0
原创粉丝点击