Java泛型

来源:互联网 发布:虚拟机 mac 硬盘空间 编辑:程序博客网 时间:2024/04/30 23:58

泛型类型的提出

public class GenericTest {    public static void main(String[] args) {        List list = new ArrayList();        list.add("qqyumidi");        list.add("corn");        list.add(100);        for (int i = 0; i < list.size(); i++) {            String name = (String) list.get(i); // 1            System.out.println("name:" + name);        }    }}

定义了一个List类型的集合,先向其中加入了两个字符串类型的值,随后加入一个Integer类型的值。这是完全允许的,因为此时list默认的类型为Object类型。在之后的循环中,由于忘记了之前在list中也加入了Integer类型的值或其他编码原因,很容易出现类似于//1中的错误。因为编译阶段正常,而运行时会出现“java.lang.ClassCastException”异常。因此,导致此类错误编码过程中不易发现。
在如上的编码过程中,我们发现主要存在两个问题:
1.当我们将一个对象放入集合中,集合不会记住此对象的类型,当再次从集合中取出此对象时,改对象的编译类型变成了Object类型,但其运行时类型任然为其本身类型。
2.因此,//1处取出集合元素时需要人为的强制类型转化到具体的目标类型,且很容易出现“java.lang.ClassCastException”异常。

那么有没有什么办法可以使集合能够记住集合内元素各类型,且能够达到只要编译时不出现问题,运行时就不会出现“java.lang.ClassCastException”异常呢?答案就是使用泛型。

二.什么是泛型?

泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

 看着好像有点复杂,首先我们看下上面那个例子采用泛型的写法。

public class GenericTest {    public static void main(String[] args) {        /*        List list = new ArrayList();        list.add("qqyumidi");        list.add("corn");        list.add(100);        */        List<String> list = new ArrayList<String>();        list.add("qqyumidi");        list.add("corn");        //list.add(100);   // 1  提示编译错误        for (int i = 0; i < list.size(); i++) {            String name = list.get(i); // 2            System.out.println("name:" + name);        }    }}

采用泛型写法后,在//1处想加入一个Integer类型的对象时会出现编译错误,通过List<String>,直接限定了list集合中只能含有String类型的元素,从而在//2处无须进行强制类型转换,因为此时,集合能够记住元素的类型信息,编译器已经能够确认它是String类型了。

结合上面的泛型定义,我们知道在List<String>中,String是类型实参,也就是说,相应的List接口中肯定含有类型形参。且get()方法的返回结果也直接是此形参类型(也就是对应的传入的类型实参)。下面就来看看List接口的的具体定义:

public interface List<E> extends Collection<E> {    int size();    boolean isEmpty();    boolean contains(Object o);    Iterator<E> iterator();    Object[] toArray();    <T> T[] toArray(T[] a);    boolean add(E e);    boolean remove(Object o);    boolean containsAll(Collection<?> c);    boolean addAll(Collection<? extends E> c);    boolean addAll(int index, Collection<? extends E> c);    boolean removeAll(Collection<?> c);    boolean retainAll(Collection<?> c);    void clear();    boolean equals(Object o);    int hashCode();    E get(int index);    E set(int index, E element);    void add(int index, E element);    E remove(int index);    int indexOf(Object o);    int lastIndexOf(Object o);    ListIterator<E> listIterator();    ListIterator<E> listIterator(int index);    List<E> subList(int fromIndex, int toIndex);}

我们可以看到,在List接口中采用泛型化定义之后,<E>中的E表示类型形参,可以接收具体的类型实参,并且此接口定义中,凡是出现E的地方均表示相同的接受自外部的类型实参。

自然的,ArrayList作为List接口的实现类,其定义形式是:

public class ArrayList<E> extends AbstractList<E>         implements List<E>, RandomAccess, Cloneable, java.io.Serializable {        public boolean add(E e) {        ensureCapacityInternal(size + 1);  // Increments modCount!!        elementData[size++] = e;        return true;    }        public E get(int index) {        rangeCheck(index);        checkForComodification();        return ArrayList.this.elementData(offset + index);    }        //...省略掉其他具体的定义过程}
由此,我们从源代码角度明白了为什么//1处加入Integer类型对象编译错误,且//2处get()到的类型直接就是String类型了。

三.自定义泛型接口、泛型类和泛型方法

从上面的内容中,大家已经明白了泛型的具体运作过程。也知道了接口、类和方法也都可以使用泛型去定义,以及相应的使用。是的,在具体使用时,可以分为泛型接口、泛型类和泛型方法。

自定义泛型接口、泛型类和泛型方法与上述Java源码中的List、ArrayList类似。如下,我们看一个最简单的泛型类和方法定义:

public class GenericTest {    public static void main(String[] args) {        Box<String> name = new Box<String>("corn");        System.out.println("name:" + name.getData());    }}class Box<T> {    private T data;    public Box() {    }    public Box(T data) {        this.data = data;    }    public T getData() {        return data;    }}
在泛型接口、泛型类和泛型方法的定义过程中,我们常见的如T、E、K、V等形式的参数常用于表示泛型形参,由于接收来自外部使用时候传入的类型实参。那么对于不同传入的类型实参,生成的相应对象实例的类型是不是一样的呢?
public class GenericTest {    public static void main(String[] args) {        Box<String> name = new Box<String>("corn");        Box<Integer> age = new Box<Integer>(712);        System.out.println("name class:" + name.getClass());      // com.qqyumidi.Box        System.out.println("age class:" + age.getClass());        // com.qqyumidi.Box        System.out.println(name.getClass() == age.getClass());    // true    }}

由此,我们发现,在使用泛型类时,虽然传入了不同的泛型实参,但并没有真正意义上生成不同的类型,传入不同泛型实参的泛型类在内存上只有一个,即还是原来的最基本的类型(本实例中为Box),当然,在逻辑上我们可以理解成多个不同的泛型类型。

究其原因,在于Java中的泛型这一概念提出的目的,导致其只是作用于代码编译阶段,在编译过程中,对于正确检验泛型结果后,会将泛型的相关信息擦出,也就是说,成功编译过后的class文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。

对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

泛型擦除 参数化类型

转载:http://www.cnblogs.com/lwbqqyumidi/p/3837629.html

0 0
原创粉丝点击