十分钟搞定pandas

来源:互联网 发布:网站源码有什么用 编辑:程序博客网 时间:2024/05/23 05:07

本文是对pandas 官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里 。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考: Cookbook 。习惯上,我们会按下面格式引入所需要的包:


一、创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:


2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

In [6]: dates = pd.date_range('20130101', periods=6)In [7]: datesOut[7]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',               '2013-01-05', '2013-01-06'],              dtype='datetime64[ns]', freq='D')In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))In [9]: dfOut[9]:                    A         B         C         D2013-01-01  0.469112 -0.282863 -1.509059 -1.1356322013-01-02  1.212112 -0.173215  0.119209 -1.0442362013-01-03 -0.861849 -2.104569 -0.494929  1.0718042013-01-04  0.721555 -0.706771 -1.039575  0.2718602013-01-05 -0.424972  0.567020  0.276232 -1.0874012013-01-06 -0.673690  0.113648 -1.478427  0.524988

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

In [10]: df2 = pd.DataFrame({ 'A' : 1.,   ....:                      'B' : pd.Timestamp('20130102'),   ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),   ....:                      'D' : np.array([3] * 4,dtype='int32'),   ....:                      'E' : pd.Categorical(["test","train","test","train"]),   ....:                      'F' : 'foo' })   ....: In [11]: df2Out[11]:      A          B    C  D      E    F0  1.0 2013-01-02  1.0  3   test  foo1  1.0 2013-01-02  1.0  3  train  foo2  1.0 2013-01-02  1.0  3   test  foo3  1.0 2013-01-02  1.0  3  train  foo

4、查看不同列的数据类型:


5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:



二、查看数据

详情请参阅: Basics Section

1、  查看frame中头部和尾部的行:


2、  显示索引、列和底层的numpy数据:


3、  describe()函数对于数据的快速统计汇总:


4、  对数据的转置:


5、  按轴进行排序


6、  按值进行排序



三、选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at ,  .iat ,  .loc ,  .iloc   和   .ix 详情请参阅Indexing and Selecing Data   和   MultiIndex / Advanced Indexing 。

l   获取

1、  选择一个单独的列,这将会返回一个 Series ,等同于 df.A :

2、  通过 [] 进行选择,这将会对行进行切片


l   通过标签选择

1、  使用标签来获取一个交叉的区域


2、  通过标签来在多个轴上进行选择


3、  标签切片


4、  对于返回的对象进行维度缩减


5、  获取一个标量


6、  快速访问一个标量(与上一个方法等价)


l   通过位置选择

1、  通过传递数值进行位置选择(选择的是行)


2、  通过数值进行切片,与 numpy/python 中的情况类似


3、  通过指定一个位置的列表,与 numpy/python 中的情况类似


4、  对行进行切片


5、  对列进行切片


6、  获取特定的值


7、获得快速访问一个标量(相当于现有的方法) 


l   布尔索引

1、  使用一个单独列的值来选择数据:


2、  使用 where 操作来选择数据:


3、  使用 isin() 方法来过滤:


l   设置

1、  设置一个新的列:

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))In [46]: s1Out[46]: 2013-01-02    12013-01-03    22013-01-04    32013-01-05    42013-01-06    52013-01-07    6Freq: D, dtype: int64In [47]: df['F'] = s1

2、  通过标签设置新的值:


3、  通过位置设置新的值:


4、  通过一个 numpy 数组设置一组新值:


上述操作结果如下:


5、  通过 where 操作来设置新的值:


四、缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅: Missing Data Section 。

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])In [56]: df1.loc[dates[0]:dates[1],'E'] = 1In [57]: df1Out[57]:                    A         B         C  D    F    E2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.02013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.02013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

2、  去掉包含缺失值的行:


3、  对缺失值进行填充:


4、  对数据进行布尔填充:


五、相关操作

详情请参与 Basic Section On Binary Ops

l  统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:


2、  在其他轴上进行相同的操作:


3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:


l  Apply

1、  对数据应用函数:


l  直方图

具体请参照: Histogramming and Discretization


l  字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考: Vectorized String Methods .

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])In [72]: s.str.lower()Out[72]: 0       a1       b2       c3    aaba4    baca5     NaN6    caba7     dog8     catdtype: object

六、合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅: Merging section

l  Concat


l  Join 类似于SQL类型的合并,具体请参阅: Database style joining


l  Append 将一行连接到一个DataFrame上,具体请参阅 Appending :


七、分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l  (Splitting)按照一些规则将数据分为不同的组;

l  (Applying)对于每组数据分别执行一个函数;

l  (Combining)将结果组合到一个数据结构中;

详情请参阅: Grouping section


1、  分组并对每个分组执行sum函数:


2、  通过多个列进行分组形成一个层次索引,然后执行函数:


八、Reshaping

详情请参阅 Hierarchical Indexing   和   Reshaping 。

l  Stack

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',   ....:                      'foo', 'foo', 'qux', 'qux'],   ....:                     ['one', 'two', 'one', 'two',   ....:                      'one', 'two', 'one', 'two']]))   ....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])In [98]: df2 = df[:4]In [99]: df2Out[99]:                      A         Bfirst second                    bar   one     0.029399 -0.542108      two     0.282696 -0.087302baz   one    -1.575170  1.771208      two     0.816482  1.100230


In [102]: stacked.unstack()Out[102]:                      A         Bfirst second                    bar   one     0.029399 -0.542108      two     0.282696 -0.087302baz   one    -1.575170  1.771208      two     0.816482  1.100230In [103]: stacked.unstack(1)Out[103]: second        one       twofirst                      bar   A  0.029399  0.282696      B -0.542108 -0.087302baz   A -1.575170  0.816482      B  1.771208  1.100230In [104]: stacked.unstack(0)Out[104]: first          bar       bazsecond                      one    A  0.029399 -1.575170       B -0.542108  1.771208two    A  0.282696  0.816482       B -0.087302  1.100230

l  数据透视表,详情请参阅: Pivot Tables .

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,   .....:                    'B' : ['A', 'B', 'C'] * 4,   .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,   .....:                    'D' : np.random.randn(12),   .....:                    'E' : np.random.randn(12)})   .....: In [106]: dfOut[106]:         A  B    C         D         E0     one  A  foo  1.418757 -0.1796661     one  B  foo -1.879024  1.2918362     two  C  foo  0.536826 -0.0096143   three  A  bar  1.006160  0.3921494     one  B  bar -0.029716  0.2645995     one  C  bar -1.146178 -0.0574096     two  A  foo  0.100900 -1.4256387   three  B  foo -1.035018  1.0240988     one  C  foo  0.314665 -0.1060629     one  A  bar -0.773723  1.82437510    two  B  bar -1.170653  0.59597411  three  C  bar  0.648740  1.167115

可以从这个数据中轻松的生成数据透视表:


九、时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section 。


1、  时区表示:


2、  时区转换:


3、  时间跨度转换:


4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。


十、Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看: categorical introduction 和 API documentation 。

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

1、  将原始的grade转换为Categorical数据类型:


2、  将Categorical类型数据重命名为更有意义的名称:


3、  对类别进行重新排序,增加缺失的类别:

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])In [132]: df["grade"]Out[132]: 0    very good1         good2         good3    very good4    very good5     very badName: grade, dtype: categoryCategories (5, object): [very bad, bad, medium, good, very good]

4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:


5、  对Categorical列进行排序时存在空的类别:


十一、画图

具体文档参看: Plotting   docs

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))In [136]: ts = ts.cumsum()In [137]: ts.plot()Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2ab2af550>

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:



十二、导入和保存数据

l  CSV,参考: Writing to a csv file

1、  写入csv文件:


2、  从csv文件中读取:

In [142]: pd.read_csv('foo.csv')Out[142]:      Unnamed: 0          A          B         C          D0    2000-01-01   0.266457  -0.399641 -0.219582   1.1868601    2000-01-02  -1.170732  -0.345873  1.653061  -0.2829532    2000-01-03  -1.734933   0.530468  2.060811  -0.5155363    2000-01-04  -1.555121   1.452620  0.239859  -1.1568964    2000-01-05   0.578117   0.511371  0.103552  -2.4282025    2000-01-06   0.478344   0.449933 -0.741620  -1.9624096    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753..          ...        ...        ...       ...        ...993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 5 columns]

l  HDF5,参考: HDFStores

1、  写入HDF5存储:

In [143]: df.to_hdf('foo.h5','df')

2、  从HDF5存储中读取:

In [144]: pd.read_hdf('foo.h5','df')Out[144]:                     A          B         C          D2000-01-01   0.266457  -0.399641 -0.219582   1.1868602000-01-02  -1.170732  -0.345873  1.653061  -0.2829532000-01-03  -1.734933   0.530468  2.060811  -0.5155362000-01-04  -1.555121   1.452620  0.239859  -1.1568962000-01-05   0.578117   0.511371  0.103552  -2.4282022000-01-06   0.478344   0.449933 -0.741620  -1.9624092000-01-07   1.235339  -0.091757 -1.543861  -1.084753...               ...        ...       ...        ...2002-09-20 -10.628548  -9.153563 -7.883146  28.3139402002-09-21 -10.390377  -8.727491 -6.399645  30.9141072002-09-22  -8.985362  -8.485624 -4.669462  31.3677402002-09-23  -9.558560  -8.781216 -4.499815  30.5184392002-09-24  -9.902058  -9.340490 -4.386639  30.1055932002-09-25 -10.216020  -9.480682 -3.933802  29.7585602002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 4 columns]

l  Excel,参考: MS Excel

1、  写入excel文件:

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

2、  从excel文件中读取:

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])Out[146]:                     A          B         C          D2000-01-01   0.266457  -0.399641 -0.219582   1.1868602000-01-02  -1.170732  -0.345873  1.653061  -0.2829532000-01-03  -1.734933   0.530468  2.060811  -0.5155362000-01-04  -1.555121   1.452620  0.239859  -1.1568962000-01-05   0.578117   0.511371  0.103552  -2.4282022000-01-06   0.478344   0.449933 -0.741620  -1.9624092000-01-07   1.235339  -0.091757 -1.543861  -1.084753...               ...        ...       ...        ...2002-09-20 -10.628548  -9.153563 -7.883146  28.3139402002-09-21 -10.390377  -8.727491 -6.399645  30.9141072002-09-22  -8.985362  -8.485624 -4.669462  31.3677402002-09-23  -9.558560  -8.781216 -4.499815  30.5184392002-09-24  -9.902058  -9.340490 -4.386639  30.1055932002-09-25 -10.216020  -9.480682 -3.933802  29.7585602002-09-26 -11.856774 -10.671012 -3.216025  29.369368[1000 rows x 4 columns]
























































0 0
原创粉丝点击