支持向量机

来源:互联网 发布:js date对象参数 编辑:程序博客网 时间:2024/05/18 09:57

   支持向量机是一个二类分类器,当用其解决多类问题时,则需要额外的方法对其进行扩展,SVM 的效果对优化参数和所使用的核函数中的参数敏感。

   核方法从一个低维空间映射到高维空间,可以将一个在低维空间中的非线性问题转换成高维空间下的线性问题来求解。

   支持向量机的具体实现代码如下:

'''Chapter 5 source file for Machine Learing in Action'''from numpy import *from time import sleepdef loadDataSet(fileName):    dataMat = []; labelMat = []    fr = open(fileName)    for line in fr.readlines():        lineArr = line.strip().split('\t')        dataMat.append([float(lineArr[0]), float(lineArr[1])])        labelMat.append(float(lineArr[2]))    return dataMat,labelMatdef selectJrand(i,m):    j=i #we want to select any J not equal to i    while (j==i):        j = int(random.uniform(0,m))    return jdef clipAlpha(aj,H,L):    if aj > H:         aj = H    if L > aj:        aj = L    return ajdef smoSimple(dataMatIn, classLabels, C, toler, maxIter):    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()    b = 0; m,n = shape(dataMatrix)    alphas = mat(zeros((m,1)))    iter = 0    while (iter < maxIter):        alphaPairsChanged = 0        for i in range(m):            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):                j = selectJrand(i,m)                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b                Ej = fXj - float(labelMat[j])                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();                if (labelMat[i] != labelMat[j]):                    L = max(0, alphas[j] - alphas[i])                    H = min(C, C + alphas[j] - alphas[i])                else:                    L = max(0, alphas[j] + alphas[i] - C)                    H = min(C, alphas[j] + alphas[i])                if L==H: print "L==H"; continue                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T                if eta >= 0: print "eta>=0"; continue                alphas[j] -= labelMat[j]*(Ei - Ej)/eta                alphas[j] = clipAlpha(alphas[j],H,L)                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j                                                                        #the update is in the oppostie direction                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T                if (0 < alphas[i]) and (C > alphas[i]): b = b1                elif (0 < alphas[j]) and (C > alphas[j]): b = b2                else: b = (b1 + b2)/2.0                alphaPairsChanged += 1                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)        if (alphaPairsChanged == 0): iter += 1        else: iter = 0        print "iteration number: %d" % iter    return b,alphasdef kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space    m,n = shape(X)    K = mat(zeros((m,1)))    if kTup[0]=='lin': K = X * A.T   #linear kernel    elif kTup[0]=='rbf':        for j in range(m):            deltaRow = X[j,:] - A            K[j] = deltaRow*deltaRow.T        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab    else: raise NameError('Houston We Have a Problem -- \    That Kernel is not recognized')    return Kclass optStruct:    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters         self.X = dataMatIn        self.labelMat = classLabels        self.C = C        self.tol = toler        self.m = shape(dataMatIn)[0]        self.alphas = mat(zeros((self.m,1)))        self.b = 0        self.eCache = mat(zeros((self.m,2))) #first column is valid flag        self.K = mat(zeros((self.m,self.m)))        for i in range(self.m):            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)        def calcEk(oS, k):    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)    Ek = fXk - float(oS.labelMat[k])    return Ek        def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej    maxK = -1; maxDeltaE = 0; Ej = 0    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E    validEcacheList = nonzero(oS.eCache[:,0].A)[0]    if (len(validEcacheList)) > 1:        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E            if k == i: continue #don't calc for i, waste of time            Ek = calcEk(oS, k)            deltaE = abs(Ei - Ek)            if (deltaE > maxDeltaE):                maxK = k; maxDeltaE = deltaE; Ej = Ek        return maxK, Ej    else:   #in this case (first time around) we don't have any valid eCache values        j = selectJrand(i, oS.m)        Ej = calcEk(oS, j)    return j, Ejdef updateEk(oS, k):#after any alpha has changed update the new value in the cache    Ek = calcEk(oS, k)    oS.eCache[k] = [1,Ek]        def innerL(i, oS):    Ei = calcEk(oS, i)    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();        if (oS.labelMat[i] != oS.labelMat[j]):            L = max(0, oS.alphas[j] - oS.alphas[i])            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])        else:            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)            H = min(oS.C, oS.alphas[j] + oS.alphas[i])        if L==H: print "L==H"; return 0        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel        if eta >= 0: print "eta>=0"; return 0        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)        updateEk(oS, j) #added this for the Ecache        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2        else: oS.b = (b1 + b2)/2.0        return 1    else: return 0def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)    iter = 0    entireSet = True; alphaPairsChanged = 0    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):        alphaPairsChanged = 0        if entireSet:   #go over all            for i in range(oS.m):                        alphaPairsChanged += innerL(i,oS)                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)            iter += 1        else:#go over non-bound (railed) alphas            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]            for i in nonBoundIs:                alphaPairsChanged += innerL(i,oS)                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)            iter += 1        if entireSet: entireSet = False #toggle entire set loop        elif (alphaPairsChanged == 0): entireSet = True          print "iteration number: %d" % iter    return oS.b,oS.alphasdef calcWs(alphas,dataArr,classLabels):    X = mat(dataArr); labelMat = mat(classLabels).transpose()    m,n = shape(X)    w = zeros((n,1))    for i in range(m):        w += multiply(alphas[i]*labelMat[i],X[i,:].T)    return wdef testRbf(k1=1.3):    dataArr,labelArr = loadDataSet('testSetRBF.txt')    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    svInd=nonzero(alphas.A>0)[0]    sVs=datMat[svInd] #get matrix of only support vectors    labelSV = labelMat[svInd];    print "there are %d Support Vectors" % shape(sVs)[0]    m,n = shape(datMat)    errorCount = 0    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b        if sign(predict)!=sign(labelArr[i]): errorCount += 1    print "the training error rate is: %f" % (float(errorCount)/m)    dataArr,labelArr = loadDataSet('testSetRBF2.txt')    errorCount = 0    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    m,n = shape(datMat)    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b        if sign(predict)!=sign(labelArr[i]): errorCount += 1        print "the test error rate is: %f" % (float(errorCount)/m)        def img2vector(filename):    returnVect = zeros((1,1024))    fr = open(filename)    for i in range(32):        lineStr = fr.readline()        for j in range(32):            returnVect[0,32*i+j] = int(lineStr[j])    return returnVectdef loadImages(dirName):    from os import listdir    hwLabels = []    trainingFileList = listdir(dirName)           #load the training set    m = len(trainingFileList)    trainingMat = zeros((m,1024))    for i in range(m):        fileNameStr = trainingFileList[i]        fileStr = fileNameStr.split('.')[0]     #take off .txt        classNumStr = int(fileStr.split('_')[0])        if classNumStr == 9: hwLabels.append(-1)        else: hwLabels.append(1)        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))    return trainingMat, hwLabels    def testDigits(kTup=('rbf', 10)):    dataArr,labelArr = loadImages('trainingDigits')    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    svInd=nonzero(alphas.A>0)[0]    sVs=datMat[svInd]     labelSV = labelMat[svInd];    print "there are %d Support Vectors" % shape(sVs)[0]    m,n = shape(datMat)    errorCount = 0    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b        if sign(predict)!=sign(labelArr[i]): errorCount += 1    print "the training error rate is: %f" % (float(errorCount)/m)    dataArr,labelArr = loadImages('testDigits')    errorCount = 0    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()    m,n = shape(datMat)    for i in range(m):        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b        if sign(predict)!=sign(labelArr[i]): errorCount += 1        print "the test error rate is: %f" % (float(errorCount)/m) '''#######********************************Non-Kernel VErsions below'''#######********************************class optStructK:    def __init__(self,dataMatIn, classLabels, C, toler):  # Initialize the structure with the parameters         self.X = dataMatIn        self.labelMat = classLabels        self.C = C        self.tol = toler        self.m = shape(dataMatIn)[0]        self.alphas = mat(zeros((self.m,1)))        self.b = 0        self.eCache = mat(zeros((self.m,2))) #first column is valid flag        def calcEkK(oS, k):    fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b    Ek = fXk - float(oS.labelMat[k])    return Ek        def selectJK(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej    maxK = -1; maxDeltaE = 0; Ej = 0    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E    validEcacheList = nonzero(oS.eCache[:,0].A)[0]    if (len(validEcacheList)) > 1:        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E            if k == i: continue #don't calc for i, waste of time            Ek = calcEk(oS, k)            deltaE = abs(Ei - Ek)            if (deltaE > maxDeltaE):                maxK = k; maxDeltaE = deltaE; Ej = Ek        return maxK, Ej    else:   #in this case (first time around) we don't have any valid eCache values        j = selectJrand(i, oS.m)        Ej = calcEk(oS, j)    return j, Ejdef updateEkK(oS, k):#after any alpha has changed update the new value in the cache    Ek = calcEk(oS, k)    oS.eCache[k] = [1,Ek]        def innerLK(i, oS):    Ei = calcEk(oS, i)    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();        if (oS.labelMat[i] != oS.labelMat[j]):            L = max(0, oS.alphas[j] - oS.alphas[i])            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])        else:            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)            H = min(oS.C, oS.alphas[j] + oS.alphas[i])        if L==H: print "L==H"; return 0        eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T        if eta >= 0: print "eta>=0"; return 0        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)        updateEk(oS, j) #added this for the Ecache        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2        else: oS.b = (b1 + b2)/2.0        return 1    else: return 0def smoPK(dataMatIn, classLabels, C, toler, maxIter):    #full Platt SMO    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)    iter = 0    entireSet = True; alphaPairsChanged = 0    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):        alphaPairsChanged = 0        if entireSet:   #go over all            for i in range(oS.m):                        alphaPairsChanged += innerL(i,oS)                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)            iter += 1        else:#go over non-bound (railed) alphas            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]            for i in nonBoundIs:                alphaPairsChanged += innerL(i,oS)                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)            iter += 1        if entireSet: entireSet = False #toggle entire set loop        elif (alphaPairsChanged == 0): entireSet = True          print "iteration number: %d" % iter    return oS.b,oS.alphas


0 0
原创粉丝点击