多线程自增问题

来源:互联网 发布:php命名空间找不到类 编辑:程序博客网 时间:2024/06/05 08:22

i++

考虑变量i++的操作,实际上可以分解为以下3步:

(1)从内存单元读入寄存器;

(2)在寄存器中对变量做增量操作;

(3)把新的值写回内存单元。

如果两个线程试图几乎在同一时间对同一变量做增量操作而不进行同步的话,结果可能就不一致了,在上述代码中,我们传进线程函数的是变量的地址,那么变量i自增后,可能还没有写回内存单元,就被另一个线程读取了,那为什么不是只创建了一个线程了,而是确确实实创建了两个线程了。


原子操作:Interlocked

现在模拟50个用户登录,为了便于观察结果,在程序中将50个用户登录过程重复20次,代码如下:

[cpp] view plain copy
  1. #include <stdio.h>  
  2. #include <windows.h>  
  3. volatile long g_nLoginCount; //登录次数  
  4. unsigned int __stdcall Fun(void *pPM); //线程函数  
  5. const DWORD THREAD_NUM = 50;//启动线程数  
  6. DWORD WINAPI ThreadFun(void *pPM)  
  7. {  
  8.     Sleep(100); //some work should to do  
  9.     g_nLoginCount++;         //重点重点重点重点重点重点重点
  10.     Sleep(50);  
  11.     return 0;  
  12. }  
  13. int main()  
  14. {  
  15.     printf("     原子操作 Interlocked系列函数的使用\n");  
  16.     printf(" -- by MoreWindows( http://blog.csdn.net/MoreWindows ) --\n\n");  
  17.       
  18.     //重复20次以便观察多线程访问同一资源时导致的冲突  
  19.     int num= 20;  
  20.     while (num--)  
  21.     {     
  22.         g_nLoginCount = 0;  
  23.         int i;  
  24.         HANDLE  handle[THREAD_NUM];  
  25.         for (i = 0; i < THREAD_NUM; i++)  
  26.             handle[i] = CreateThread(NULL, 0, ThreadFun, NULL, 0, NULL);  
  27.         WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);  
  28.         printf("有%d个用户登录后记录结果是%d\n", THREAD_NUM, g_nLoginCount);  
  29.     }  
  30.     return 0;  
  31. }  

运行结果如下图:

现在结果水落石出,明明有50个线程执行了g_nLoginCount++;操作,但结果输出是不确定的,有可能为50,但也有可能小于50

       要解决这个问题,我们就分析下g_nLoginCount++;操作。在VC6.0编译器对g_nLoginCount++;这一语句打个断点,再按F5进入调试状态,然后按下Debug工具栏的Disassembly按钮,这样就出现了汇编代码窗口。可以发现在C/C++语言中一条简单的自增语句其实是由三条汇编代码组成的,如下图所示。

讲解下这三条汇编意思:

第一条汇编将g_nLoginCount的值从内存中读取到寄存器eax中。

第二条汇编将寄存器eax中的值与1相加,计算结果仍存入寄存器eax中。

第三条汇编将寄存器eax中的值写回内存中。

       这样由于线程执行的并发性,很可能线程A执行到第二句时,线程B开始执行,线程B将原来的值又写入寄存器eax中,这样线程A所主要计算的值就被线程B修改了。这样执行下来,结果是不可预知的——可能会出现50,可能小于50

       因此在多线程环境中对一个变量进行读写时,我们需要有一种方法能够保证对一个值的递增操作是原子操作——即不可打断性,一个线程在执行原子操作时,其它线程必须等待它完成之后才能开始执行该原子操作。这种涉及到硬件的操作会不会很复杂了,幸运的是,Windows系统为我们提供了一些以Interlocked开头的函数来完成这一任务(下文将这些函数称为Interlocked系列函数)。


Interlocked系列函数

1.增减操作

LONG__cdeclInterlockedIncrement(LONG volatile* Addend);

LONG__cdeclInterlockedDecrement(LONG volatile* Addend);

返回变量执行增减操作之后的值

LONG__cdec InterlockedExchangeAdd(LONG volatile* AddendLONGValue);

返回运算后的值,注意!加个负数就是减。

 

2.赋值操作

LONG__cdeclInterlockedExchange(LONG volatile* TargetLONGValue);

Value就是新值,函数会返回原先的值。

 

在本例中只要使用InterlockedIncrement()函数就可以了。将线程函数代码改成:

[cpp] view plain copy
  1. DWORD WINAPI ThreadFun(void *pPM)  
  2. {  
  3.     Sleep(100);//some work should to do  
  4.     //g_nLoginCount++;  
  5.     InterlockedIncrement((LPLONG) & g_nLoginCount);  
  6.     Sleep(50);  
  7.     return 0;  
  8.  

再次运行,可以发现结果会是唯一的,输出都为50。


因此,在多线程环境下,我们对变量的自增自减这些简单的语句也要慎重思考,防止多个线程导致的数据访问出错。


1 0
原创粉丝点击