Linux——死锁

来源:互联网 发布:js获取所有a标签 编辑:程序博客网 时间:2024/06/07 22:34

什么是死锁
例如:现有资源A、B,进程C、D
描述如下:
  资源A和资源B,都是不可剥夺资源,
  现在进程C已经申请了资源A,进程D申请了资源B,
  进程C接下来的操作需要用到资源B,而进程D恰好也在申请资源A,
  进程C、D都得不到接下来的资源,那么就引发了死锁。
即如果一个进程集合里面(进程C和进 程D)的每个进程(进程C和进程D)都在等待只能由这个集合中的其他一个进程(对于进程C,他在等进程D;对于进程D,他在等进程C)才能引发的事件(释放相应资源)。这种情况就是死锁。

死锁的四个必要条件
(1)互斥条件(Mutual exclusion):资源不能被共享,只能由一个进程使用。
(2)请求与保持条件(Hold and wait):已经得到资源的进程可以再次申请新的资源。
(3)非剥夺条件(No pre-emption):已经分配的资源不能从相应的进程中被强制地剥夺。
(4)循环等待条件(Circular wait):系统中若干进程组成环路,该环路中每个进程都在等待相邻进程正占用的资源。

处理死锁的策略
1.忽略该问题。例如鸵鸟算法,该算法可以应用在极少发生死锁的的情况下。
为什么叫鸵鸟算法呢,因为传说中鸵鸟看到危险就把头埋在地底下,
可能鸵鸟觉得看不到危险也就没危险了吧。跟掩耳盗铃有点像。
2.检测死锁并且恢复。
3.仔细地对资源进行动态分配,以避免死锁。(银行家算法)
4.通过破除死锁四个必要条件之一,来防止死锁产生。

理解了死锁的原因,尤其是产生死锁的四个必要条件,就可以最大可能地避免、预防和解除死锁。所以,在系统设计、进程调度等方面注意如何不让这四个必要条件成立,如何确定资源的合理分配算法,避免进程永久占据系统资源。此外,也要防止进程在处于等待状态的情况下占用资源。因此,对资源的分配要给予合理的规划。

银行家算法:有效避免死锁的发生,或检测死锁的存在
银行家算法,顾名思义是来源于银行的借贷业务,一定数量的本金要应多个客户的借贷周转,为了防止银行家资金无法周转而倒闭,对每一笔贷款,必须考察其是否能限期归还。在操作系统中研究资源分配策略时也有类似问题,系统中有限的资源要供多个进程使用,必须保证得到的资源的进程能在有限的时间内归还资源,以供其他进程使用资源。如果资源分配不得到就会发生进程循环等待资源,则进程都无法继续执行下去的死锁现象。把一个进程需要和已占有资源的情况记录在进程控制中,假定进程控制块PCB其中“状态”有就绪态、等待态和完成态。当进程在处于等待态时,表示系统不能满足该进程当前的资源申请。“资源需求总量”表示进程在整个执行过程中总共要申请的资源量。显然,,每个进程的资源需求总量不能超过系统拥有的资源总数, 银行算法进行资源分配可以避免死锁.
我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。

银行家算法中的数据结构
(1)可利用资源向量Available。这是一个含有m个元素的数组,其中的,每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。

(2)最大需求矩阵Max。这是一个n*m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。

(3)分配矩阵Allocation。这也是一个n*m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的数目为K。

(4)需求矩阵Need。这也是一个n*m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。

算法描述
设进程i提出请求Request[j],则银行家算法按如下规则进行判断。
(1)如果Request[j]≤Need[i,j],则转向(2),否则认为出错。
(2)如果Request[j]≤Available[j],则转向(3);否则表示尚无足够资源,Pi需等待。
(3)假设进程i的申请已获批准,于是修改系统状态:

Available[j]=Available[j]-Request[i]

Allocation[i,j]=Allocation[i,j]+Request[j]

Need[i,j]=Need[i,j]-Request[j]

(4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。

安全性检查
(1)设置两个工作向量Work=Available;Finish[i]=False
(2)从进程集合中找到一个满足下述条件的进程,
Finish [i]=False;
Need[i,j]≤Work[j];
如找到,执行(3);否则,执行(4)
(3)设进程获得资源,可顺利执行,直至完成,从而释放资源。
Work[j]=Work[i]+Allocation[i,j];
Finish[i]=True;
go to step 2;
(4)如所有的进程Finish[i]=true,则表示安全;否则系统不安全。

0 0
原创粉丝点击