Rxjava初理解

来源:互联网 发布:包公权知开封府 编辑:程序博客网 时间:2024/05/18 17:45

前言

越来越多的人开始提及 RxJava 。有人说『RxJava 真是太好用了』,有人说『RxJava 真是太难用了』,另外更多的人表示:我真的百度了也谷歌了,但我还是想问: RxJava 到底是什么?

RxJava 是什么

RxJava 在 GitHub 主页上的自我介绍是 "a library for composing asynchronous and event-based programs using observable sequences for the Java VM"(一个在 Java VM 上使用可观测的序列来组成异步的、基于事件的程序的库)。这就是 RxJava ,概括得非常精准(好吧,精不精准我们不要太过于纠结,重点是下一句!)。RxJava 的本质可以压缩为异步这一个词。说到根上,它就是一个实现异步操作的库,而别的定语都是基于这之上的!

RxJava 好在哪

换句话说,『同样是做异步,为什么人们用它,而不用现成的 AsyncTask / Handler / XXX / ... ?』

一个词:简洁

异步操作很关键的一点是程序的简洁性,因为在调度过程比较复杂的情况下,异步代码经常会既难写也难被读懂。 Android 创造的 AsyncTaskHandler ,其实都是为了让异步代码更加简洁。RxJava 的优势也是简洁,但它的简洁的与众不同之处在于,随着程序逻辑变得越来越复杂,它依然能够保持简洁。


假设有这样一个需求:界面上有一个自定义的视图 imageCollectorView ,它的作用是显示多张图片,并能使用 addImage(Bitmap) 方法来任意增加显示的图片。现在需要程序将一个给出的目录数组 File[] folders 中每个目录下的 png 图片都加载出来并显示在imageCollectorView 中。需要注意的是,由于读取图片的这一过程较为耗时,需要放在后台执行,而图片的显示则必须在 UI 线程执行。常用的实现方式有多种,我这里贴出其中一种:

new Thread() {    @Override    public void run() {        super.run();        for (File folder : folders) {            File[] files = folder.listFiles();            for (File file : files) {                if (file.getName().endsWith(".png")) {                    final Bitmap bitmap = getBitmapFromFile(file);                    getActivity().runOnUiThread(new Runnable() {                        @Override                        public void run() {                            imageCollectorView.addImage(bitmap);                        }                    });                }            }        }    }}.start();


而如果使用 RxJava ,实现方式是这样的:

Observable.from(folders)    .flatMap(new Func1<File, Observable<File>>() {        @Override        public Observable<File> call(File file) {            return Observable.from(file.listFiles());        }    })    .filter(new Func1<File, Boolean>() {        @Override        public Boolean call(File file) {            return file.getName().endsWith(".png");        }    })    .map(new Func1<File, Bitmap>() {        @Override        public Bitmap call(File file) {            return getBitmapFromFile(file);        }    })    .subscribeOn(Schedulers.io())    .observeOn(AndroidSchedulers.mainThread())    .subscribe(new Action1<Bitmap>() {        @Override        public void call(Bitmap bitmap) {            imageCollectorView.addImage(bitmap);        }    });

那位说话了:『你这代码明明变多了啊!简洁个毛啊!』大兄弟你消消气,我说的是逻辑的简洁,不是单纯的代码量少(逻辑简洁才是提升读写代码速度的必杀技对不?)。观察一下你会发现, RxJava 的这个实现,是一条从上到下的链式调用,没有任何嵌套,这在逻辑的简洁性上是具有优势的。当需求变得复杂时,这种优势将更加明显(试想如果还要求只选取前 10 张图片,常规方式要怎么办?如果有更多这样那样的要求呢?再试想,在这一大堆需求实现完两个月之后需要改功能,当你翻回这里看到自己当初写下的那一片迷之缩进,你能保证自己将迅速看懂,而不是对着代码重新捋一遍思路?)。


API 介绍和原理简析

这个我就做不到一个词说明了……因为这一节的主要内容就是一步步地说明 RxJava 到底怎样做到了异步,怎样做到了简洁。

1. 概念:扩展的观察者模式

RxJava 的异步实现,是通过一种扩展的观察者模式来实现的。

观察者模式(好吧,这里不对这个做过多叙述了,如果有不太熟悉的朋友,百度一下,琢磨一下监听事件的流程就行。)


RxJava 的观察者模式

RxJava 有四个基本概念:Observable (可观察者,即被观察者)、 Observer (观察者)、subscribe (订阅)、事件。ObservableObserver 通过subscribe() 方法实现订阅关系,从而 Observable 可以在需要的时候发出事件来通知 Observer

与传统观察者模式不同, RxJava 的事件回调方法除了普通事件 onNext() (相当于 onClick() /onEvent())之外,还定义了两个特殊的事件:onCompleted()onError()

1.onCompleted(): 事件队列完结。RxJava 不仅把每个事件单独处理,还会把它们看做一个队列。RxJava 规定,当不会再有新的onNext() 发出时,需要触发 onCompleted() 方法作为标志。

2.onError(): 事件队列异常。在事件处理过程中出异常时,onError() 会被触发,同时队列自动终止,不允许再有事件发出。

3.在一个正确运行的事件序列中, onCompleted()onError() 有且只有一个,并且是事件序列中的最后一个。需要注意的是,onCompleted()onError() 二者也是互斥的,即在队列中调用了其中一个,就不应该再调用另一个。


2. 基本实现

基于以上的概念, RxJava 的基本实现主要有三点:

1) 创建 Observer

Observer 即观察者,它决定事件触发的时候将有怎样的行为。 RxJava 中的 Observer 接口的实现方式:

Observer<String> observer = new Observer<String>() {    @Override    public void onNext(String s) {        Log.d(tag, "Item: " + s);    }    @Override    public void onCompleted() {        Log.d(tag, "Completed!");    }    @Override    public void onError(Throwable e) {        Log.d(tag, "Error!");    }};


除了 Observer 接口之外,RxJava 还内置了一个实现了 Observer 的抽象类:SubscriberSubscriberObserver 接口进行了一些扩展,但他们的基本使用方式是完全一样的:

Subscriber<String> subscriber = new Subscriber<String>() {    @Override    public void onNext(String s) {        Log.d(tag, "Item: " + s);    }    @Override    public void onCompleted() {        Log.d(tag, "Completed!");    }    @Override    public void onError(Throwable e) {        Log.d(tag, "Error!");    }};


不仅基本使用方式一样,实质上,在 RxJava 的 subscribe 过程中,Observer 也总是会先被转换成一个 Subscriber 再使用。所以如果你只想使用基本功能,选择ObserverSubscriber 是完全一样的。至于区别我也不太明白,等以后再跟大家探讨。

2) 创建 Observable

Observable 即被观察者,它决定什么时候触发事件以及触发怎样的事件。 RxJava 使用 create() 方法来创建一个 Observable ,并为它定义事件触发规则:

Observable observable = Observable.create(new Observable.OnSubscribe<String>() {    @Override    public void call(Subscriber<? super String> subscriber) {        subscriber.onNext("Hello");        subscriber.onNext("Hi");        subscriber.onNext("Aloha");        subscriber.onCompleted();    }});


可以看到,这里传入了一个 OnSubscribe 对象作为参数。OnSubscribe 会被存储在返回的 Observable 对象中,它的作用相当于一个计划表,当 Observable 被订阅的时候,OnSubscribecall() 方法会自动被调用,事件序列就会依照设定依次触发(对于上面的代码,就是观察者Subscriber 将会被调用三次onNext() 和一次 onCompleted())。这样,由被观察者调用了观察者的回调方法,就实现了由被观察者向观察者的事件传递,即观察者模式。

create() 方法是 RxJava 最基本的创造事件序列的方法。基于这个方法, RxJava 还提供了一些方法用来快捷创建事件队列,例如:

1.just(T...): 将传入的参数依次发送出来。

Observable observable = Observable.just("Hello", "Hi", "Aloha");// 将会依次调用:// onNext("Hello");// onNext("Hi");// onNext("Aloha");// onCompleted();


2.from(T[]) / from(Iterable<? extends T>) : 将传入的数组或Iterable 拆分成具体对象后,依次发送出来。

String[] words = {"Hello", "Hi", "Aloha"};Observable observable = Observable.from(words);// 将会依次调用:// onNext("Hello");// onNext("Hi");// onNext("Aloha");// onCompleted();


上面 just(T...) 的例子和 from(T[]) 的例子,都和之前的 create(OnSubscribe) 的例子是等价的。


3) Subscribe (订阅)

创建了 ObservableObserver 之后,再用 subscribe() 方法将它们联结起来,整条链子就可以工作了。代码形式很简单:

observable.subscribe(observer);// 或者:observable.subscribe(subscriber);

有人可能会注意到, subscribe() 这个方法有点怪:它看起来是『observalbe 订阅了 observer / subscriber』而不是『observer / subscriber 订阅了observalbe』,这看起来就像『杂志订阅了读者』一样颠倒了对象关系。这让人读起来有点别扭,不过如果把 API 设计成 observer.subscribe(observable) / subscriber.subscribe(observable) ,虽然更加符合思维逻辑,但对流式 API 的设计就造成影响了,比较起来明显是得不偿失的。


可以看到,subscriber() 做了3件事:

  1. 调用 Subscriber.onStart() 。是一个可选的准备方法。
  2. 调用 Observable 中的 OnSubscribe.call(Subscriber) 。在这里,事件发送的逻辑开始运行。从这也可以看出,在 RxJava 中,Observable 并不是在创建的时候就立即开始发送事件,而是在它被订阅的时候,即当 subscribe() 方法执行的时候。
  3. 将传入的 Subscriber 作为 Subscription 返回。这是为了方便 unsubscribe().

除了 subscribe(Observer)subscribe(Subscriber)subscribe() 还支持不完整定义的回调,RxJava 会自动根据定义创建出Subscriber 。形式如下:

Action1<String> onNextAction = new Action1<String>() {    // onNext()    @Override    public void call(String s) {        Log.d(tag, s);    }};Action1<Throwable> onErrorAction = new Action1<Throwable>() {    // onError()    @Override    public void call(Throwable throwable) {        // Error handling    }};Action0 onCompletedAction = new Action0() {    // onCompleted()    @Override    public void call() {        Log.d(tag, "completed");    }};// 自动创建 Subscriber ,并使用 onNextAction 来定义 onNext()observable.subscribe(onNextAction);// 自动创建 Subscriber ,并使用 onNextAction 和 onErrorAction 来定义 onNext() 和 onError()observable.subscribe(onNextAction, onErrorAction);// 自动创建 Subscriber ,并使用 onNextAction、 onErrorAction 和 onCompletedAction 来定义 onNext()、 onError() 和 onCompleted()observable.subscribe(onNextAction, onErrorAction, onCompletedAction);

简单解释一下这段代码中出现的 Action1Action0Action0 是 RxJava 的一个接口,它只有一个方法call(),这个方法是无参无返回值的;由于 onCompleted() 方法也是无参无返回值的,因此 Action0 可以被当成一个包装对象,将 onCompleted() 的内容打包起来将自己作为一个参数传入 subscribe() 以实现不完整定义的回调。这样其实也可以看做将 onCompleted() 方法作为参数传进了 subscribe(),相当于其他某些语言中的『闭包』。 Action1 也是一个接口,它同样只有一个方法 call(T param),这个方法也无返回值,但有一个参数;与Action0 同理,由于 onNext(T obj)onError(Throwable error) 也是单参数无返回值的,因此Action1 可以将 onNext(obj)onError(error) 打包起来传入subscribe() 以实现不完整定义的回调。事实上,虽然 Action0Action1 在 API 中使用最广泛,但 RxJava 是提供了多个ActionX 形式的接口 (例如 Action2, Action3) 的,它们可以被用以包装不同的无返回值的方法。注:正如前面所提到的,ObserverSubscriber 具有相同的角色,而且 Observersubscribe() 过程中最终会被转换成Subscriber 对象,因此,从这里开始,后面的描述我将用 Subscriber 来代替 Observer ,这样更加严谨。

4) 场景示例

下面举两个例子:

a. 打印字符串数组

将字符串数组 names 中的所有字符串依次打印出来:

String[] names = ...;Observable.from(names)    .subscribe(new Action1<String>() {        @Override        public void call(String name) {            Log.d(tag, name);        }    });

b. 由 id 取得图片并显示

由指定的一个 drawable 文件 id drawableRes 取得图片,并显示在 ImageView 中,并在出现异常的时候打印 Toast 报错:

int drawableRes = ...;ImageView imageView = ...;Observable.create(new OnSubscribe<Drawable>() {    @Override    public void call(Subscriber<? super Drawable> subscriber) {        Drawable drawable = getTheme().getDrawable(drawableRes));        subscriber.onNext(drawable);        subscriber.onCompleted();    }}).subscribe(new Observer<Drawable>() {    @Override    public void onNext(Drawable drawable) {        imageView.setImageDrawable(drawable);    }    @Override    public void onCompleted() {    }    @Override    public void onError(Throwable e) {        Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show();    }});


正如上面两个例子这样,创建出 ObservableSubscriber ,再用 subscribe() 将它们串起来,一次 RxJava 的基本使用就完成了。非常简单。

!然而到现在看来RxJava并没有什么屌用!!(好吧,其实我们还没有体现出它的根本-异步)

在 RxJava 的默认规则中,事件的发出和消费都是在同一个线程的。也就是说,如果只用上面的方法,实现出来的只是一个同步的观察者模式。观察者模式本身的目的就是『后台处理,前台回调』的异步机制,因此异步对于 RxJava 是至关重要的。而要实现异步,则需要用到 RxJava 的另一个概念:Scheduler

3.线程控制——Scheduler(一)

在不指定线程的情况下, RxJava 遵循的是线程不变的原则,即:在哪个线程调用subscribe(),就在哪个线程生产事件;在哪个线程生产事件,就在哪个线程消费事件。如果需要切换线程,就需要用到Scheduler (调度器)。

1) Scheduler 的 API (一)

在RxJava 中,Scheduler ——调度器,相当于线程控制器,RxJava 通过它来指定每一段代码应该运行在什么样的线程。RxJava 已经内置了几个Scheduler ,它们已经适合大多数的使用场景:

1.Schedulers.immediate(): 直接在当前线程运行,相当于不指定线程。这是默认的 Scheduler

2.Schedulers.newThread(): 总是启用新线程,并在新线程执行操作

3.Schedulers.io(): I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下io()newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。

4.Schedulers.computation(): 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。
5.另外, Android 还有一个专用的 AndroidSchedulers.mainThread(),它指定的操作将在 Android 主线程运行。

有了这几个 Scheduler ,就可以使用 subscribeOn()observeOn() 两个方法来对线程进行控制了。 *subscribeOn(): 指定 subscribe() 所发生的线程,即 Observable.OnSubscribe 被激活时所处的线程。或者叫做事件产生的线程。 *observeOn(): 指定 Subscriber 所运行在的线程。或者叫做事件消费的线程。

Observable.just(1, 2, 3, 4)    .subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程    .observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程    .subscribe(new Action1<Integer>() {        @Override        public void call(Integer number) {            Log.d(tag, "number:" + number);        }    });

上面这段代码中,由于 subscribeOn(Schedulers.io()) 的指定,被创建的事件的内容 1234 将会在 IO 线程发出;而由于observeOn(AndroidScheculers.mainThread()) 的指定,因此 subscriber 数字的打印将发生在主线程 。事实上,这种在subscribe() 之前写上两句 subscribeOn(Scheduler.io())observeOn(AndroidSchedulers.mainThread()) 的使用方式非常常见,它适用于多数的 『后台线程取数据,主线程显示』的程序策略。

而前面提到的由图片 id 取得图片并显示的例子,如果也加上这两句:

int drawableRes = ...;ImageView imageView = ...;Observable.create(new OnSubscribe<Drawable>() {    @Override    public void call(Subscriber<? super Drawable> subscriber) {        Drawable drawable = getTheme().getDrawable(drawableRes));        subscriber.onNext(drawable);        subscriber.onCompleted();    }}).subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程.observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程.subscribe(new Observer<Drawable>() {    @Override    public void onNext(Drawable drawable) {        imageView.setImageDrawable(drawable);    }    @Override    public void onCompleted() {    }    @Override    public void onError(Throwable e) {        Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show();    }});

那么,加载图片将会发生在 IO 线程,而设置图片则被设定在了主线程。这就意味着,即使加载图片耗费了几十甚至几百毫秒的时间,也不会造成丝毫界面的卡顿。

好了大家,今天就先说到这里,关于RxJava的更多牛逼之处(变换)放到下次讲!对RxJava不是太理解的盆友们,希望这篇文章可以帮到大家!




1 0
原创粉丝点击