使用消息队列需要注意的几个关键问题

来源:互联网 发布:龙珠孙悟空知乎 编辑:程序博客网 时间:2024/05/16 06:19

工作的项目中使用了消息队列,需要注意几个关键问题:

  • 消息的顺序问题
  • 消息的重复问题
  • 事务消息


看了一篇不错的文章,以下是那篇文章部分内容:


一、顺序消息

消息有序指的是可以按照消息的发送顺序来消费。例如:一笔订单产生了 3 条消息,分别是订单创建、订单付款、订单完成。消费时,要按照顺序依次消费才有意义。与此同时多笔订单之间又是可以并行消费的。首先来看如下示例:

假如生产者产生了2条消息:M1、M2,要保证这两条消息的顺序,应该怎样做?你脑中想到的可能是这样:


你可能会采用这种方式保证消息顺序


假定M1发送到S1,M2发送到S2,如果要保证M1先于M2被消费,那么需要M1到达消费端被消费后,通知S2,然后S2再将M2发送到消费端。

这个模型存在的问题是,如果M1和M2分别发送到两台Server上,就不能保证M1先达到MQ集群,也不能保证M1被先消费。换个角度看,如果M2先于M1达到MQ集群,甚至M2被消费后,M1才达到消费端,这时消息也就乱序了,说明以上模型是不能保证消息的顺序的。如何才能在MQ集群保证消息的顺序?一种简单的方式就是将M1、M2发送到同一个Server上:


保证消息顺序,你改进后的方法


这样可以保证M1先于M2到达MQServer(生产者等待M1发送成功后再发送M2),根据先达到先被消费的原则,M1会先于M2被消费,这样就保证了消息的顺序。

这个模型也仅仅是理论上可以保证消息的顺序,在实际场景中可能会遇到下面的问题:


网络延迟问题

只要将消息从一台服务器发往另一台服务器,就会存在网络延迟问题。如上图所示,如果发送M1耗时大于发送M2的耗时,那么M2就仍将被先消费,仍然不能保证消息的顺序。即使M1和M2同时到达消费端,由于不清楚消费端1和消费端2的负载情况,仍然有可能出现M2先于M1被消费的情况。

那如何解决这个问题?将M1和M2发往同一个消费者,且发送M1后,需要消费端响应成功后才能发送M2。

聪明的你可能已经想到另外的问题:如果M1被发送到消费端后,消费端1没有响应,那是继续发送M2呢,还是重新发送M1?一般为了保证消息一定被消费,肯定会选择重发M1到另外一个消费端2,就如下图所示。


保证消息顺序的正确姿势

这样的模型就严格保证消息的顺序,细心的你仍然会发现问题,消费端1没有响应Server时有两种情况,一种是M1确实没有到达(数据在网络传送中丢失),另外一种消费端已经消费M1且已经发送响应消息,只是MQ Server端没有收到。如果是第二种情况,重发M1,就会造成M1被重复消费。也就引入了我们要说的第二个问题,消息重复问题,这个后文会详细讲解。

回过头来看消息顺序问题,严格的顺序消息非常容易理解,也可以通过文中所描述的方式来简单处理。总结起来,要实现严格的顺序消息,简单且可行的办法就是:

保证生产者 - MQServer - 消费者是一对一对一的关系

这样的设计虽然简单易行,但也会存在一些很严重的问题,比如:

  1. 并行度就会成为消息系统的瓶颈(吞吐量不够)
  2. 更多的异常处理,比如:只要消费端出现问题,就会导致整个处理流程阻塞,我们不得不花费更多的精力来解决阻塞的问题。

但我们的最终目标是要集群的高容错性和高吞吐量。这似乎是一对不可调和的矛盾,那么阿里是如何解决的?

世界上解决一个计算机问题最简单的方法:“恰好”不需要解决它!—— 沈询

有些问题,看起来很重要,但实际上我们可以通过合理的设计或者将问题分解来规避。如果硬要把时间花在解决问题本身,实际上不仅效率低下,而且也是一种浪费。从这个角度来看消息的顺序问题,我们可以得出两个结论:

  1. 不关注乱序的应用实际大量存在
  2. 队列无序并不意味着消息无序

所以从业务层面来保证消息的顺序而不仅仅是依赖于消息系统,是不是我们应该寻求的一种更合理的方式?

最后我们从源码角度分析RocketMQ怎么实现发送顺序消息。

RocketMQ通过轮询所有队列的方式来确定消息被发送到哪一个队列(负载均衡策略)。比如下面的示例中,订单号相同的消息会被先后发送到同一个队列中:

// RocketMQ通过MessageQueueSelector中实现的算法来确定消息发送到哪一个队列上// RocketMQ默认提供了两种MessageQueueSelector实现:随机/Hash// 当然你可以根据业务实现自己的MessageQueueSelector来决定消息按照何种策略发送到消息队列中SendResult sendResult = producer.send(msg, new MessageQueueSelector() {    @Override    public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {        Integer id = (Integer) arg;        int index = id % mqs.size();        return mqs.get(index);    }}, orderId);

在获取到路由信息以后,会根据MessageQueueSelector实现的算法来选择一个队列,同一个OrderId获取到的肯定是同一个队列。

private SendResult send()  {    // 获取topic路由信息    TopicPublishInfo topicPublishInfo = this.tryToFindTopicPublishInfo(msg.getTopic());    if (topicPublishInfo != null && topicPublishInfo.ok()) {        MessageQueue mq = null;        // 根据我们的算法,选择一个发送队列        // 这里的arg = orderId        mq = selector.select(topicPublishInfo.getMessageQueueList(), msg, arg);        if (mq != null) {            return this.sendKernelImpl(msg, mq, communicationMode, sendCallback, timeout);        }    }}
二、消息重复

上面在解决消息顺序问题时,引入了一个新的问题,就是消息重复。那么RocketMQ是怎样解决消息重复的问题呢?还是“恰好”不解决。

造成消息重复的根本原因是:网络不可达。只要通过网络交换数据,就无法避免这个问题。所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?

  1. 消费端处理消息的业务逻辑保持幂等性
  2. 保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现

第1条很好理解,只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。第2条原理就是利用一张日志表来记录已经处理成功的消息的ID,如果新到的消息ID已经在日志表中,那么就不再处理这条消息。

第1条解决方案,很明显应该在消费端实现,不属于消息系统要实现的功能。第2条可以消息系统实现,也可以业务端实现。正常情况下出现重复消息的概率其实很小,如果由消息系统来实现的话,肯定会对消息系统的吞吐量和高可用有影响,所以最好还是由业务端自己处理消息重复的问题,这也是RocketMQ不解决消息重复的问题的原因。

RocketMQ不保证消息不重复,如果你的业务需要保证严格的不重复消息,需要你自己在业务端去重。

三、事务消息

RocketMQ除了支持普通消息,顺序消息,另外还支持事务消息。首先讨论一下什么是事务消息以及支持事务消息的必要性。我们以一个转帐的场景为例来说明这个问题:Bob向Smith转账100块。

在单机环境下,执行事务的情况,大概是下面这个样子:


单机环境下转账事务示意图

当用户增长到一定程度,Bob和Smith的账户及余额信息已经不在同一台服务器上了,那么上面的流程就变成了这样:


集群环境下转账事务示意图

这时候你会发现,同样是一个转账的业务,在集群环境下,耗时居然成倍的增长,这显然是不能够接受的。那如何来规避这个问题?

大事务 = 小事务 + 异步

将大事务拆分成多个小事务异步执行。这样基本上能够将跨机事务的执行效率优化到与单机一致。转账的事务就可以分解成如下两个小事务:


小事务+异步消息


图中执行本地事务(Bob账户扣款)和发送异步消息应该保证同时成功或者同时失败,也就是扣款成功了,发送消息一定要成功,如果扣款失败了,就不能再发送消息。那问题是:我们是先扣款还是先发送消息呢?

首先看下先发送消息的情况,大致的示意图如下:


事务消息:先发送消息

存在的问题是:如果消息发送成功,但是扣款失败,消费端就会消费此消息,进而向Smith账户加钱。

先发消息不行,那就先扣款吧,大致的示意图如下:


事务消息-先扣款

存在的问题跟上面类似:如果扣款成功,发送消息失败,就会出现Bob扣钱了,但是Smith账户未加钱。

可能大家会有很多的方法来解决这个问题,比如:直接将发消息放到Bob扣款的事务中去,如果发送失败,抛出异常,事务回滚。这样的处理方式也符合“恰好”不需要解决的原则。

这里需要说明一下:如果使用Spring来管理事物的话,大可以将发送消息的逻辑放到本地事物中去,发送消息失败抛出异常,Spring捕捉到异常后就会回滚此事物,以此来保证本地事物与发送消息的原子性。

RocketMQ支持事务消息,下面来看看RocketMQ是怎样来实现的。


RocketMQ实现发送事务消息

RocketMQ第一阶段发送Prepared消息时,会拿到消息的地址,第二阶段执行本地事物,第三阶段通过第一阶段拿到的地址去访问消息,并修改消息的状态。

细心的你可能又发现问题了,如果确认消息发送失败了怎么办?RocketMQ会定期扫描消息集群中的事物消息,如果发现了Prepared消息,它会向消息发送端(生产者)确认,Bob的钱到底是减了还是没减呢?如果减了是回滚还是继续发送确认消息呢?RocketMQ会根据发送端设置的策略来决定是回滚还是继续发送确认消息。这样就保证了消息发送与本地事务同时成功或同时失败。

那我们来看下RocketMQ源码,是如何处理事务消息的。客户端发送事务消息的部分(完整代码请查看:rocketmq-example工程下的com.alibaba.rocketmq.example.transaction.TransactionProducer):

// =============================发送事务消息的一系列准备工作========================================// 未决事务,MQ服务器回查客户端// 也就是上文所说的,当RocketMQ发现`Prepared消息`时,会根据这个Listener实现的策略来决断事务TransactionCheckListener transactionCheckListener = new TransactionCheckListenerImpl();// 构造事务消息的生产者TransactionMQProducer producer = new TransactionMQProducer("groupName");// 设置事务决断处理类producer.setTransactionCheckListener(transactionCheckListener);// 本地事务的处理逻辑,相当于示例中检查Bob账户并扣钱的逻辑TransactionExecuterImpl tranExecuter = new TransactionExecuterImpl();producer.start()// 构造MSG,省略构造参数Message msg = new Message(......);// 发送消息SendResult sendResult = producer.sendMessageInTransaction(msg, tranExecuter, null);producer.shutdown();

接着查看sendMessageInTransaction方法的源码,总共分为3个阶段:发送Prepared消息、执行本地事务、发送确认消息。

//  ================================事务消息的发送过程=============================================public TransactionSendResult sendMessageInTransaction(.....)  {    // 逻辑代码,非实际代码    // 1.发送消息    sendResult = this.send(msg);    // sendResult.getSendStatus() == SEND_OK    // 2.如果消息发送成功,处理与消息关联的本地事务单元    LocalTransactionState localTransactionState = tranExecuter.executeLocalTransactionBranch(msg, arg);    // 3.结束事务    this.endTransaction(sendResult, localTransactionState, localException);}

endTransaction方法会将请求发往broker(mq server)去更新事务消息的最终状态:

  1. 根据sendResult找到Prepared消息 ,sendResult包含事务消息的ID
  2. 根据localTransaction更新消息的最终状态

如果endTransaction方法执行失败,数据没有发送到broker,导致事务消息的 状态更新失败,broker会有回查线程定时(默认1分钟)扫描每个存储事务状态的表格文件,如果是已经提交或者回滚的消息直接跳过,如果是prepared状态则会向Producer发起CheckTransaction请求,Producer会调用DefaultMQProducerImpl.checkTransactionState()方法来处理broker的定时回调请求,而checkTransactionState会调用我们的事务设置的决断方法来决定是回滚事务还是继续执行,最后调用endTransactionOnewaybroker来更新消息的最终状态。

再回到转账的例子,如果Bob的账户的余额已经减少,且消息已经发送成功,Smith端开始消费这条消息,这个时候就会出现消费失败和消费超时两个问题,解决超时问题的思路就是一直重试,直到消费端消费消息成功,整个过程中有可能会出现消息重复的问题,按照前面的思路解决即可。


消费事务消息

这样基本上可以解决消费端超时问题,但是如果消费失败怎么办?阿里提供给我们的解决方法是:人工解决。大家可以考虑一下,按照事务的流程,因为某种原因Smith加款失败,那么需要回滚整个流程。如果消息系统要实现这个回滚流程的话,系统复杂度将大大提升,且很容易出现Bug,估计出现Bug的概率会比消费失败的概率大很多。这也是RocketMQ目前暂时没有解决这个问题的原因,在设计实现消息系统时,我们需要衡量是否值得花这么大的代价来解决这样一个出现概率非常小的问题,这也是大家在解决疑难问题时需要多多思考的地方。

20160321补充:在3.2.6版本中移除了事务消息的实现,所以此版本不支持事务消息,具体情况请参考rocketmq的issues:
https://github.com/alibaba/RocketMQ/issues/65
https://github.com/alibaba/RocketMQ/issues/138
https://github.com/alibaba/RocketMQ/issues/156

===============

关于事务消息,还有别的解决方案, 转载另一篇文章:

说到分布式事务,就会谈到那个经典的”账号转账”问题:2个账号,分布处于2个不同的DB,或者说2个不同的子系统里面,A要扣钱,B要加钱,如何保证原子性?

一般的思路都是通过消息中间件来实现“最终一致性”:A系统扣钱,然后发条消息给中间件,B系统接收此消息,进行加钱。

但这里面有个问题:A是先update DB,后发送消息呢? 还是先发送消息,后update DB?

假设先update DB成功,发送消息网络失败,重发又失败,怎么办? 
假设先发送消息成功,update DB失败。消息已经发出去了,又不能撤回,怎么办?

所以,这里下个结论: 只要发送消息和update DB这2个操作不是原子的,无论谁先谁后,都是有问题的。

那这个问题怎么解决呢??

错误的方案0

有人可能想到了,我可以把“发送消息”这个网络调用和update DB放在同1个事务里面,如果发送消息失败,update DB自动回滚。这样不就保证2个操作的原子性了吗?

这个方案看似正确,其实是错误的,原因有2:

(1)网络的2将军问题:发送消息失败,发送方并不知道是消息中间件真的没有收到消息呢?还是消息已经收到了,只是返回response的时候失败了?

如果是已经收到消息了,而发送端认为没有收到,执行update db的回滚操作。则会导致A账号的钱没有扣,B账号的钱却加了。

(2)把网络调用放在DB事务里面,可能会因为网络的延时,导致DB长事务。严重的,会block整个DB。这个风险很大。

基于以上分析,我们知道,这个方案其实是错误的!

方案1–业务方自己实现

假设消息中间件没有提供“事务消息”功能,比如你用的是Kafka。那如何解决这个问题呢?

解决方案如下: 
(1)Producer端准备1张消息表,把update DB和insert message这2个操作,放在一个DB事务里面。

(2)准备一个后台程序,源源不断的把消息表中的message传送给消息中间件。失败了,不断重试重传。允许消息重复,但消息不会丢,顺序也不会打乱。

(3)Consumer端准备一个判重表。处理过的消息,记在判重表里面。实现业务的幂等。但这里又涉及一个原子性问题:如果保证消息消费 + insert message到判重表这2个操作的原子性?

消费成功,但insert判重表失败,怎么办?关于这个,在Kafka的源码分析系列,第1篇, exactly once问题的时候,有过讨论。

通过上面3步,我们基本就解决了这里update db和发送网络消息这2个操作的原子性问题。

但这个方案的一个缺点就是:需要设计DB消息表,同时还需要一个后台任务,不断扫描本地消息。导致消息的处理和业务逻辑耦合额外增加业务方的负担。

方案2 – RocketMQ 事务消息

为了能解决该问题,同时又不和业务耦合,RocketMQ提出了“事务消息”的概念。

具体来说,就是把消息的发送分成了2个阶段:Prepare阶段和确认阶段。

具体来说,上面的2个步骤,被分解成3个步骤: 
(1) 发送Prepared消息 
(2) update DB 
(3) 根据update DB结果成功或失败,Confirm或者取消Prepared消息。

可能有人会问了,前2步执行成功了,最后1步失败了怎么办?这里就涉及到了RocketMQ的关键点:RocketMQ会定期(默认是1分钟)扫描所有的Prepared消息,询问发送方,到底是要确认这条消息发出去?还是取消此条消息?

具体代码实现如下:

也就是定义了一个checkListener,RocketMQ会回调此Listener,从而实现上面所说的方案。

// 也就是上文所说的,当RocketMQ发现`Prepared消息`时,会根据这个Listener实现的策略来决断事务TransactionCheckListener transactionCheckListener = new TransactionCheckListenerImpl();// 构造事务消息的生产者TransactionMQProducer producer = new TransactionMQProducer("groupName");// 设置事务决断处理类producer.setTransactionCheckListener(transactionCheckListener);// 本地事务的处理逻辑,相当于示例中检查Bob账户并扣钱的逻辑TransactionExecuterImpl tranExecuter = new TransactionExecuterImpl();producer.start()// 构造MSG,省略构造参数Message msg = new Message(......);// 发送消息SendResult sendResult = producer.sendMessageInTransaction(msg, tranExecuter, null);producer.shutdown();
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
public TransactionSendResult sendMessageInTransaction(.....)  {    // 逻辑代码,非实际代码    // 1.发送消息    sendResult = this.send(msg);    // sendResult.getSendStatus() == SEND_OK    // 2.如果消息发送成功,处理与消息关联的本地事务单元    LocalTransactionState localTransactionState = tranExecuter.executeLocalTransactionBranch(msg, arg);    // 3.结束事务    this.endTransaction(sendResult, localTransactionState, localException);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

总结:对比方案2和方案1,RocketMQ最大的改变,其实就是把“扫描消息表”这个事情,不让业务方做,而是消息中间件帮着做了。

至于消息表,其实还是没有省掉。因为消息中间件要询问发送方,事物是否执行成功,还是需要一个“变相的本地消息表”,记录事物执行状态。

人工介入

可能有人又要说了,无论方案1,还是方案2,发送端把消息成功放入了队列,但消费端消费失败怎么办?

消费失败了,重试,还一直失败怎么办?是不是要自动回滚整个流程?

答案是人工介入。从工程实践角度讲,这种整个流程自动回滚的代价是非常巨大的,不但实现复杂,还会引入新的问题。比如自动回滚失败,又怎么处理?

对应这种极低概率的case,采取人工处理,会比实现一个高复杂的自动化回滚系统,更加可靠,也更加简单。


3 0