简述DCL失效原因,解决方法

来源:互联网 发布:手机淘宝兼职是真的吗 编辑:程序博客网 时间:2024/05/18 01:10

DCL单例模式

针对延迟加载法的同步实现所产生的性能低的问题,我们可以采用DCL,即双重检查加锁(Double Check Lock)的方法来避免每次调用getInstance()方法时都同步。实现方式如下:

public class LazySingleton {    private int someField;    private static LazySingleton instance;    private LazySingleton() {        this.someField = new Random().nextInt(200)+1;         // (1)    }    public static LazySingleton getInstance() {        if (instance == null) {                               // (2)            synchronized(LazySingleton.class) {               // (3)                if (instance == null) {                       // (4)                    instance = new LazySingleton();           // (5)                }            }        }        return instance;                                      // (6)    }    public int getSomeField() {        return this.someField;                                // (7)    }}

优点:资源利用率高,不执行getInstance就不会被实例,多线程下效率高。
缺点:第一次加载时反应不快,由于Java 内存模型一些原因偶尔会失败,在高并发环境下也有一定的缺陷,虽然发生概率很小。

  DCL对instance进行了两次null判断,第一层判断主要是为了避免不必要的同步,第二层的判断则是为了在null的情况下创建实例。

这里得到单一的instance实例是没有问题的,问题的关键在于尽管得到了Singleton的正确引用,但是却有可能访问到其成员变量的不正确值。具体来说Singleton.getInstance().getSomeField()有可能返回someField的默认值0。如果程序行为正确的话,这应当是不可能发生的事,因为在构造函数里设置的someField的值不可能为0。为也说明这种情况理论上有可能发生,我们只需要说明语句(1)和语句(7)并不存在happen-before关系。

假设线程Ⅰ是初次调用getInstance()方法,紧接着线程Ⅱ也调用了getInstance()方法和getSomeField()方法,我们要说明的是线程Ⅰ的语句(1)并不happen-before线程Ⅱ的语句(7)。线程Ⅱ在执行getInstance()方法的语句(2)时,由于对instance的访问并没有处于同步块中,因此线程Ⅱ可能观察到也可能观察不到线程Ⅰ在语句(5)时对instance的写入,也就是说instance的值可能为空也可能为非空。我们先假设instance的值非空,也就观察到了线程Ⅰ对instance的写入,这时线程Ⅱ就会执行语句(6)直接返回这个instance的值,然后对这个instance调用getSomeField()方法,该方法也是在没有任何同步情况被调用,因此整个线程Ⅱ的操作都是在没有同步的情况下调用 ,这时我们便无法利用上述8条happen-before规则得到线程Ⅰ的操作和线程Ⅱ的操作之间的任何有效的happen-before关系(主要考虑规则的第2条,但由于线程Ⅱ没有在进入synchronized块,因此不存在lock与unlock锁的问题),这说明线程Ⅰ的语句(1)和线程Ⅱ的语句(7)之间并不存在happen-before关系,这就意味着线程Ⅱ在执行语句(7)完全有可能观测不到线程Ⅰ在语句(1)处对someFiled写入的值,这就是DCL的问题所在。很荒谬,是吧?DCL原本是为了逃避同步,它达到了这个目的,也正是因为如此,它最终受到惩罚,这样的程序存在严重的bug,虽然这种bug被发现的概率绝对比中彩票的概率还要低得多,而且是转瞬即逝,更可怕的是,即使发生了你也不会想到是DCL所引起的。

前面我们说了,线程Ⅱ在执行语句(2)时也有可能观察空值,如果是种情况,那么它需要进入同步块,并执行语句(4)。在语句(4)处线程Ⅱ还能够读到instance的空值吗?不可能。这里因为这时对instance的写和读都是发生在同一个锁确定的同步块中,这时读到的数据是最新的数据。为也加深印象,我再用happen-before规则分析一遍。线程Ⅱ在语句(3)处会执行一个lock操作,而线程Ⅰ在语句(5)后会执行一个unlock操作,这两个操作都是针对同一个锁--Singleton.class,因此根据第2条happen-before规则,线程Ⅰ的unlock操作happen-before线程Ⅱ的lock操作,再利用单线程规则,线程Ⅰ的语句(5) -> 线程Ⅰ的unlock操作,线程Ⅱ的lock操作 -> 线程Ⅱ的语句(4),再根据传递规则,就有线程Ⅰ的语句(5) -> 线程Ⅱ的语句(4),也就是说线程Ⅱ在执行语句(4)时能够观测到线程Ⅰ在语句(5)时对Singleton的写入值。接着对返回的instance调用getSomeField()方法时,我们也能得到线程Ⅰ的语句(1) -> 线程Ⅱ的语句(7)(由于线程Ⅱ有进入synchronized块,根据规则2可得),这表明这时getSomeField能够得到正确的值。但是仅仅是这种情况的正确性并不妨碍DCL的不正确性,一个程序的正确性必须在所有的情况下的行为都是正确的,而不能有时正确,有时不正确。对DCL的分析也告诉我们一条经验原则:对引用(包括对象引用和数组引用)的非同步访问,即使得到该引用的最新值,却并不能保证也能得到其成员变量(对数组而言就是每个数组元素)的最新值。

解决方案:
1、最简单而且安全的解决方法是使用static内部类的思想,它利用的思想是:一个类直到被使用时才被初始化,而类初始化的过程是非并行的,这些都有JLS保证。
如下述代码:

public class Singleton {  private Singleton() {}  private static class InstanceHolder {   private static final Singleton instance = new Singleton();  }  public static Singleton getSingleton() {    return InstanceHolder.instance;  }}

2、另外,可以将instance声明为volatile,即
private volatile static LazySingleton instance;
这样我们便可以得到,线程Ⅰ的语句(5) -> 语线程Ⅱ的句(2),根据单线程规则,线程Ⅰ的语句(1) -> 线程Ⅰ的语句(5)和语线程Ⅱ的句(2) -> 语线程Ⅱ的句(7),再根据传递规则就有线程Ⅰ的语句(1) -> 语线程Ⅱ的句(7),这表示线程Ⅱ能够观察到线程Ⅰ在语句(1)时对someFiled的写入值,程序能够得到正确的行为。

注:
1、volatile屏蔽指令重排序的语义在JDK1.5中才被完全修复,此前的JDK中及时将变量声明为volatile,也仍然不能完全避免重排序所导致的问题(主要是volatile变量前后的代码仍然存在重排序问题),这点也是在JDK1.5之前的Java中无法安全使用DCL来实现单例模式的原因。
2、把volatile写和volatile读这两个操作综合起来看,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前,所有可见的共享变量的值都将立即变得对读线程B可见。

3、 在java5之前对final字段的同步语义和其它变量没有什么区别,在java5中,final变量一旦在构造函数中设置完成(前提是在构造函数中没有泄露this引用),其它线程必定会看到在构造函数中设置的值。而DCL的问题正好在于看到对象的成员变量的默认值,因此我们可以将LazySingleton的someField变量设置成final,这样在java5中就能够正确运行了。

0 0