TensorFlow实战14:实现估值网络(强化学习二)

来源:互联网 发布:身份证复印件软件v3.4 编辑:程序博客网 时间:2024/05/16 23:40

1.估值网络简介
在强化学习中,除了上节提到的策略网络(Policy Based)直接选择Action的方法,还有一种学习Action对应的期望值(Expected Utility)的方法,称为Q-Learning,和Plolicy Based方法一样, Q-Learning不依赖环境模型。在有限马尔科夫决策过程中(Markov Decision Process)中,Q-Learning被证明最终可以找到最优的策略。简单来说,将旧的Q-Learning函数,向着学习目标(当前获得的Reward加上下一步可获得的最大期望价值)按一个较小的学习速率学习,得到新的Q-Learning函数,这个就是Q-Learning的具体的思想,学习率决定了覆盖之前掌握信息的比例,通常设为一个比较小的值,如果设定的值比较大,那么覆盖之前的信息比较多,那么会造成整个网络的动荡。

我们用来学习Q-Learning的模型可以是神经网络,这样得到的模型即是估值网络。如果其中的神经网络比较深,那就是DQN。在DQN的使用中会有很多的Trick。第一个是在DQN中引入卷积层,第二个是Experience Replay,第三个Trick就是可以再使用一个DQN网络来辅助训练,第四个Trick,如果再分拆出target DQN的方法上更进一步,那就是Double DQN,第五个Trick是使用dual DQN。

2.GridWorld的任务代码实现

#coding:utf-8#这里也是导入常用的依赖库#为了直接能够在终端中运行代码,我还是把魔法命定注释掉了,具体的魔法命令的解释可以看上一个实战import numpy as np import randomimport itertoolsimport scipy.miscimport matplotlib.pyplot as plt import tensorflow as tf import os # %matplotlib inline #先是创建环境内物体对象的classclass gameOb():    def __init__(self, coordinates, size, intensity, channel, reward, name):        self.x = coordinates[0]        self.y = coordinates[1]        self.size = size        self.intensity = intensity        self.channel = channel        self.reward = reward         self.name = name#创建GridWorld环境的classclass gameEnv():    def __init__(self, size):        self.sizeX = size        self.sizeY = size        self.actions = 4        self.objects = []        a = self.reset()        plt.imshow(a, interpolation = "nearest")#hero是用户控制的对象,4个goal的reward为1, 2个fire的reward为-1    def reset(self):        self.objects = []        hero = gameOb(self.newPosition(), 1, 1, 2, None, 'hero')        self.objects.append(hero)        goal = gameOb(self.newPosition(), 1, 1, 1, 1, 'goal')        self.objects.append(goal)        hole = gameOb(self.newPosition(), 1, 1, 0, -1, 'fire')        self.objects.append(hole)         goal2 = gameOb(self.newPosition(), 1, 1, 1, 1, 'goal')        self.objects.append(goal2)        hole2 = gameOb(self.newPosition(), 1, 1, 0, -1, 'fire')        self.objects.append(hole2)        goal3 = gameOb(self.newPosition(), 1, 1, 1, 1, 'goal')        self.objects.append(goal3)        goal4 = gameOb(self.newPosition(), 1, 1, 1, 1, 'goal')        self.objects.append(goal4)        state = self.renderEnv()        self.state = state        return state#实现英雄角色移动的方向0,1, 2,3,分别代表下,上, 左,右    def moveChar(self, direction):        hero = self.objects[0]        heroX = hero.x        heroY = hero.y        if direction == 0 and hero.y >= 1:            hero.y -= 1        if direction == 1 and hero.y <= self.sizeY-2:            hero.y += 1        if direction == 2 and hero.x >= 1:            hero.x -= 1        if direction == 3 and hero.x <= self.sizeX - 2:            hero.x += 1        self.objects[0] = hero #定义新的位置    def newPosition(self):        iterables = [range(self.sizeX), range(self.sizeY)]        points = []        for t in itertools.product(*iterables):            points.append(t)        currentPositions = []        for objectA in self.objects:            if (objectA.x, objectA.y) not in currentPositions:                currentPositions.append((objectA.x, objectA.y))        for pos in currentPositions:            points.remove(pos)        location = np.random.choice(range(len(points)), replace = False)        return points[location]#定义checkGoal函数,用来检查hero是否触碰了goal或者fire    def checkGoal(self):        others = []        for obj in self.objects:            if obj.name == 'hero':                hero = obj             else:                others.append(obj)        for other in others:            if hero.x == other.x and hero.y == other.y:                self.objects.remove(other)                if other.reward == 1:                    self.objects.append(gameOb(self.newPosition(), 1, 1, 1, 1, 'goal'))                else:                    self.objects.append(gameOb(self.newPosition(), 1, 1, 0, -1, 'fire'))                return other.reward, False        return 0.0, False#渲染图像尺寸    def renderEnv(self):        a = np.ones([self.sizeY+2, self.sizeX+2, 3])        a[1:-1, 1:-1, :] = 0        hero = None        for item in self.objects:            a[item.y+1: item.y + item.size + 1, item.x + 1 : item.x + item.size + 1, item.channel] = item.intensity        b = scipy.misc.imresize(a[:, :, 0], [84, 84, 1], interp = 'nearest')        c = scipy.misc.imresize(a[:, :, 1], [84, 84, 1], interp = 'nearest')        d = scipy.misc.imresize(a[:, :, 2], [84, 84, 1], interp = 'nearest')        a = np.stack([b, c, d], axis = 2)        return a#定义执行的Action的方法    def step(self, action):        self.moveChar(action)        reward, done = self.checkGoal()        state = self.renderEnv()        return state, reward, done#设置尺寸为5env = gameEnv(size = 5)#定义DQN(Deep Q-Network)网络class Qnetwork():    def __init__(self, h_size):        self.scalarInput = tf.placeholder(shape = [None, 21168], dtype = tf.float32)        self.imageIn = tf.reshape(self.scalarInput, shape = [-1, 84, 84, 3])        self.conv1 = tf.contrib.layers.convolution2d(inputs = self.imageIn, num_outputs = 32, kernel_size = [8, 8], stride = [4, 4], padding = 'VALID', biases_initializer = None)        self.conv2 = tf.contrib.layers.convolution2d(inputs = self.conv1, num_outputs = 64, kernel_size = [4, 4], stride = [2, 2], padding = 'VALID', biases_initializer = None)        self.conv3 = tf.contrib.layers.convolution2d(inputs = self.conv2, num_outputs = 64, kernel_size = [3, 3], stride = [1, 1], padding = 'VALID', biases_initializer = None)        self.conv4 = tf.contrib.layers.convolution2d(inputs = self.conv3, num_outputs = 512, kernel_size = [7, 7], stride = [1, 1], padding = 'VALID', biases_initializer = None)        self.streamAC, self.streamVC = tf.split(self.conv4, 2, 3)        self.streamA = tf.contrib.layers.flatten(self.streamAC)        self.streamV = tf.contrib.layers.flatten(self.streamVC)        self.AW = tf.Variable(tf.random_normal([h_size // 2, env.actions]))        self.VW = tf.Variable(tf.random_normal([h_size // 2, 1]))        self.Adavantage = tf.matmul(self.streamA, self.AW)        self.Value = tf.matmul(self.streamV, self.VW)        self.Qout = self.Value + tf.subtract(self.Adavantage, tf.reduce_mean(self.Adavantage, reduction_indices = 1, keep_dims = True))        self.predict = tf.argmax(self.Qout, 1)        self.targetQ = tf.placeholder(shape = [None], dtype = tf.float32)        self.actions = tf.placeholder(shape = [None], dtype = tf.int32)        self.actions_onehot = tf.one_hot(self.actions, env.actions, dtype = tf.float32)        self.Q = tf.reduce_sum(tf.multiply(self.Qout, self.actions_onehot), reduction_indices = 1)        self.td_error = tf.square(self.targetQ - self.Q)        self.loss = tf.reduce_mean(self.td_error)        self.trainer = tf.train.AdamOptimizer(learning_rate = 0.0001)        self.UpdateModel = self.trainer.minimize(self.loss)#实现Experience Replay策略class experience_buffer():    def __init__(self, buffer_size = 50000):        self.buffer = []        self.buffer_size = buffer_size    def add(self, experience):        if len(self.buffer) + len(experience) >= self.buffer_size:            self.buffer[0: (len(experience) + len(self.buffer)) - self.buffer_size] = []        self.buffer.extend(experience)    def sample(self, size):        return np.reshape(np.array(random.sample(self.buffer, size)), [size, 5])#把当前state扁平为1维向量的函数def processState(states):    return np.reshape(states, [21168])#更新模型参数def updateTargetGraph(tfVars, tau):    total_vars = len(tfVars)    op_holder = []    for idx, var in enumerate(tfVars[0: total_vars // 2]):        op_holder.append(tfVars[idx + total_vars // 2].assign((var.value() * tau) + ((1 - tau) * tfVars[idx + total_vars // 2].value())))    return op_holderdef updateTarget(op_holder,sess):    for op in op_holder:        sess.run(op)#设置一些训练参数batch_size = 32update_freq = 4y = .99startE = 1endE = 0.1anneling_steps = 10000.num_episodes = 10000pre_train_steps = 10000max_epLength = 50load_model = Falsepath = "./dqn"h_size = 512tau = 0.001#初始化mainQN = Qnetwork(h_size)targetQN = Qnetwork(h_size)init = tf.global_variables_initializer()trainables = tf.trainable_variables()targetOps = updateTargetGraph(trainables, tau)myBuffer = experience_buffer()e = startEstepDrop = (startE - endE) / anneling_stepsrList = []total_steps = 0saver = tf.train.Saver()if not os.path.exists(path):    os.makedirs(path)#创建默认的sessionwith tf.Session() as sess:    if load_model == True:        print('Load Model...')        ckpt = tf.train.get_checkpoint_state(path)        saver.restore(sess, ckpt.model_checkpoint_path)    sess.run(init)    updateTarget(targetOps, sess)    for i in range(num_episodes + 1):        episodeBuffer = experience_buffer()        s = env.reset()        s = processState(s)        d = False        rAll = 0        j = 0        while j < max_epLength:            j += 1            if np.random.rand(1) < e or total_steps < pre_train_steps:                a = np.random.randint(0, 4)            else:                a = sess.run(mainQN.predict, feed_dict = {mainQN.scalarInput: [s]})[0]            s1, r, d = env.step(a)            s1 = processState(s1)            total_steps += 1            episodeBuffer.add(np.reshape(np.array([s, a, r, s1, d]), [1, 5]))            if total_steps > pre_train_steps:                if e > endE:                    e -= stepDrop                if total_steps % (update_freq) == 0:                    trainBatch = myBuffer.sample(batch_size)                    A = sess.run(mainQN.predict, feed_dict = {mainQN.scalarInput: np.vstack(trainBatch[:, 3])})                    Q = sess.run(targetQN.Qout, feed_dict = {targetQN.scalarInput: np.vstack(trainBatch[:, 3])})                    doubleQ = Q[range(batch_size), A]                    targetQ = trainBatch[:, 2] + y * doubleQ                    _ = sess.run(mainQN.UpdateModel, feed_dict = {mainQN.scalarInput: np.vstack(trainBatch[:, 0]),                                                                     mainQN.targetQ: targetQ,                                                                    mainQN.actions:trainBatch[:, 1]})                    updateTarget(targetOps, sess)            rAll += r             s = s1            if d == True:                break        myBuffer.add(episodeBuffer.buffer)        rList.append(rAll)        if i > 0 and i % 25 == 0:            print('episode', i, ', average reward of last 25 episode', np.mean(rList[-25:]))        if i > 0 and i % 1000 == 0:            saver.save(sess, path + '/model-' + str(i) + '.cptk')            print("Saved Model")    saver.save(sess, path + '/model-' + str(i) + '.cptk')rMat = np.resize(np.array(rList), [len(rList) // 100, 100])rMean = np.average(rMat, 1)plt.plot(rMean)

这个还是要训练好久,不过还是蛮好玩的,如果可以用强化学习训练一个监督机器人,这样LZ就不会有拖延症啦O(∩_∩)O

1 0