二叉树的完整操作

来源:互联网 发布:微店淘宝搬家助手 编辑:程序博客网 时间:2024/05/21 03:19
#include <iostream>using namespace std;#include <queue>#include <stack>#include <list>template<class T>struct BinaryTreeNode{    BinaryTreeNode(const T& data)        : _data(data)        , _pLeft(NULL)        , _pRight(NULL)    {}    T _data;    BinaryTreeNode<T>* _pLeft;    // 左孩子    BinaryTreeNode<T>* _pRight;   // 右孩子};template<class T>class BinaryTree{    typedef BinaryTreeNode<T> Node;public:    BinaryTree()        : _pRoot(NULL)    {}    //构造二叉树    BinaryTree(const T array[], size_t size, const T& invalid)    {        // 创建树        size_t index = 0;        _CreateTree(_pRoot, array, size, index, invalid);    }    //拷贝二叉树    BinaryTree(const BinaryTree<T>& t)    {        _pRoot = _CopyBinaryTree(t._pRoot);    }    //二叉树的赋值函数    BinaryTree<T>& operator=(const BinaryTree<T>& t)    {        if(this != NULL)        {            _DestroyTree(_pRoot);            _pRoot = _CopyBinaryTree(t._pRoot);            return *this;        }    }    // 递归前序遍历:访问根结点-->左子树-->右子树    void PreOrder()    {        cout<<"递归前序遍历:";        _PreOrder(_pRoot);        cout<<endl<<endl;    }    // 非递归前序遍历:访问根结点-->左子树-->右子树    void PreOrder_Nor()    {        cout<<"非递归前序遍历:";        if(_pRoot == NULL)//空树            return;        stack<Node*> s;        s.push(_pRoot); //根节点入栈        while(!s.empty())        {            Node* pCur = s.top(); //取当前节点            cout<<pCur->_data<<" "; //访问当前节点            s.pop(); //出栈            if(pCur->_pRight)                s.push(pCur->_pRight); //右子树先入栈            if(pCur->_pLeft)                s.push(pCur->_pLeft); //左子树再入栈        }        cout<<endl<<endl;    }    // 递归中序遍历:访问左子树-->根结点-->右子树     void InOrder()    {        cout<<"中序遍历:";        _InOrder(_pRoot);        cout<<endl<<endl;    }    // 非递归中序遍历:访问左子树-->根结点-->右子树     void InOrder_Nor()    {        cout<<"非递归中序遍历:";        if(_pRoot == NULL)            return;  //空树        Node* pCur = _pRoot;        stack<Node*> s;        while(!s.empty() || pCur)        {            //找最左边节点,并保存该路径上的所有节点            while(pCur)            {                s.push(pCur);                pCur = pCur->_pLeft;            }            pCur = s.top(); //取栈顶            cout<<pCur->_data<<" "; //访问            s.pop(); //出栈            pCur = pCur->_pRight;        }        cout<<endl<<endl;    }    // 后序遍历:访问左子树-->右子树-->根节点    void PostOrder()    {        cout<<"后序遍历:";        _PostOrder(_pRoot);        cout<<endl<<endl;    }    // 后续遍历的非递归版本:访问左子树-->右子树-->根节点    void PostOrder_Nor()    {        cout<<"非递归中序遍历:";        if(_pRoot == NULL)            return;        Node* pCur = _pRoot;        Node* prev = NULL;        stack<Node*> s;        while(!s.empty() || pCur)        {            //找最左边节点并保存路径上所有节点            while(pCur)            {                s.push(pCur);                pCur = pCur->_pLeft;            }            pCur = s.top(); //取栈顶            if(pCur->_pRight == NULL || prev == pCur->_pRight)            {                cout<<pCur->_data<<" "; //访问                prev = pCur; //标记                s.pop();                pCur = NULL;            }            else            {                pCur = pCur->_pRight;            }        }        cout<<endl<<endl;    }    // 层序遍历    void LevelOrder()    {        cout<<"层序遍历:";        _LevelOrder(_pRoot);        cout<<endl<<endl;    }    ~BinaryTree()    {        _DestroyTree(_pRoot);        _pRoot = NULL;    }    //找到节点的双亲节点    Node* GetParent(Node* x)    {        return _GetParent(_pRoot,x);    }    //找到结点的左孩子    Node* GetLeftChild(Node* pCur)    {        return pCur->_pLeft;    }    //找到结点的右孩子    Node* GetRightChild(Node* pCur)    {        return pCur->_pRight;    }    //在二叉树中查找某个节点    Node* Find(const T& value)    {        return _Find(_pRoot, value);    }    //二叉树的高度    size_t Height()    {        return _Height(_pRoot);    }    //叶子结点的个数    size_t GetLeefNode()    {        return _GetLeefNode(_pRoot);    }    //第K层有几个节点    size_t GetKLevelNode(size_t k)    {        return _GetKLevelNode(_pRoot, k);    }    // 求二叉树的镜像:非递归    void GetBinaryMirror_Nor()    {        queue<Node *> q;          Node *pointer = _pRoot;//当前处理的节点为根节点          while (pointer)          {              swap(pointer->_pLeft, pointer->_pRight);//交换当前处理节点的孩子              if (pointer->_pLeft)//左孩子不为空                  q.push(pointer->_pLeft);             if (pointer->_pRight)//右孩子不为空                  q.push(pointer->_pRight);             if (!q.empty())              {                  pointer = q.front();                  q.pop();              }              else              {                  break;              }          }     }    // 求二叉树的镜像:递归版本    void GetBinaryMirror()    {        return _GetBinaryMirror(_pRoot);    }    // 利用层序遍历来处理--> 关键:找第一个度不为2的结点-->后续结点    // 如果有孩子则不是完全二叉树    // 否则:是    bool IsCompleteBinaryTree()    {        if(_pRoot == NULL)            return true;        Node* pCur = NULL;        queue<Node*> q;        q.push(_pRoot);        int flag = false;        while(!q.empty())        {            pCur = q.front();            q.pop();            if(flag == true)            {                if(pCur->_pLeft != NULL || pCur->_pRight != NULL)                    return false;                return true;            }            else            {                if(pCur->_pLeft != NULL && pCur->_pRight != NULL)                  {                      q.push(pCur->_pLeft);                      q.push(pCur->_pRight);                  }                else if(pCur->_pRight!= NULL)                {                    return false;                }                else if(pCur->_pLeft != NULL)                {                    q.push(pCur->_pLeft);                    flag = true;                }                else                {                    flag = true;                }            }        }        return false;    }    // 求二叉树中两个节点的最近公共祖先节点    Node* GetLastCommonParent(Node* Node1, Node* Node2)    {        return _GetLastCommonParent(_pRoot, Node1, Node2);    }    // 由前序遍历序列和中序遍历序列重建二叉树    Node* RebuildBinaryTree(char* PreOrder, char* InOrder, int length)    {        //int len1 = sizeof(PreOrder/PreOrder[0]);        //int len2 = sizeof(InOrder/InOrder[0]);        //if(len1 != len2)            //return NULL;        if(PreOrder == NULL || InOrder == NULL || length < 0)            return NULL;        // 前序遍历的第一个数据就是根节点数据         Node* _pRoot = new BinaryTreeNode<char>(PreOrder[0]);        // 查找根节点在中序遍历中的位置,中序遍历中,根节点左边为左子树,右边为右子树          int rootPositionInOrder = -1;          for(int i = 0; i < length; i++)          {            if(InOrder[i] == _pRoot->_data)              {                  rootPositionInOrder = i;                  break;              }        }        // 重建左子树          int nodeNumLeft = rootPositionInOrder;          char* pPreOrderLeft = PreOrder + 1;          char* pInOrderLeft = InOrder + nodeNumLeft;          _pRoot->_pLeft = RebuildBinaryTree(pPreOrderLeft, pInOrderLeft, nodeNumLeft);          // 重建右子树          int nodeNumRight = length - nodeNumLeft - 1;          char* pPreOrderRight = PreOrder + 1 + nodeNumLeft;          char* pInOrderRight = InOrder + nodeNumLeft + 1;          _pRoot->_pRight = RebuildBinaryTree(pPreOrderRight, pInOrderRight, nodeNumRight);          return _pRoot;      }private:    void _CreateTree(Node*& pRoot, const T array[],         size_t size, size_t& index, const T& invalid)    {        if(index < size && (array[index] != invalid))//两个顺序不可调换,否则会导致越界访问        {            //创建根节点            pRoot = new Node(array[index]);            //创建根结点左子树            _CreateTree(pRoot->_pLeft, array, size, ++index, invalid);            //创建根结点左子树            _CreateTree(pRoot->_pRight, array, size, ++index, invalid);        }    }    Node* _CopyBinaryTree(Node* pRoot)    {        if(pRoot)        {            Node* pNewNode = new Node(pRoot->_data);            pNewNode->_pLeft = _CopyBinaryTree(pRoot->_pLeft);            pNewNode->_pRight = _CopyBinaryTree(pRoot->_pRight);            return pNewNode;        }        return NULL;    }    void _DestroyTree(Node* &pRoot)    {        if(pRoot)        {            _DestroyTree(pRoot->_pLeft);            _DestroyTree(pRoot->_pRight);            delete pRoot;            pRoot = NULL;        }    }    void _PreOrder(Node* pRoot)    {        if(pRoot)        {            cout<<pRoot->_data<<" ";            _PreOrder(pRoot->_pLeft);            _PreOrder(pRoot->_pRight);        }    }    void _InOrder(Node* pRoot)    {        if(pRoot)        {            _InOrder(pRoot->_pLeft);            cout<<pRoot->_data<<" ";            _InOrder(pRoot->_pRight);        }    }    void _PostOrder(Node* pRoot)    {        if(pRoot)        {            _PostOrder(pRoot->_pLeft);            _PostOrder(pRoot->_pRight);            cout<<pRoot->_data<<" ";        }    }    void _LevelOrder(Node* pRoot)    {        if(pRoot == NULL)            return;        queue<Node*> q;        q.push(pRoot);        Node* pCur = NULL;        while(!q.empty())        {            pCur = q.front();            cout<<pCur->_data<<" ";            if(pCur->_pLeft)                q.push(pCur->_pLeft);            if(pCur->_pRight)                q.push(pCur->_pRight);            q.pop();         }    }    Node* _GetParent(Node* pRoot, Node* x)    {        if(pRoot == NULL || x ==  NULL || x == pRoot)            return NULL;        if(pRoot->_pLeft == x || pRoot->_pRight == x)            return pRoot;        Node* parent = NULL;        if(parent = _GetParent(pRoot->_pLeft, x))            return parent;        if(parent = _GetParent(pRoot->_pRight, x))            return parent;        return NULL;    }    Node* _Find(Node* pRoot, const T& value)    {        if(pRoot == NULL)  //空树            return NULL;        if(pRoot->_data == value)              return pRoot;        Node* pCur = NULL;//如果不用返回值接收需要再调用一次函数        if(pCur = _Find(pRoot->_pLeft, value))            return pCur;        if(pCur = _Find(pRoot->_pRight, value))        return pCur;    }    size_t _Height(Node* pRoot)    {        if(pRoot == NULL)  //空树            return 0;        if(pRoot->_pLeft == NULL || pRoot->_pRight == NULL)            return 1;   //只有一个根节点的树        size_t lefthHight = _Height(pRoot->_pLeft);        size_t rightHeight = _Height(pRoot->_pRight);        return (lefthHight>rightHeight) ? (lefthHight+1) : (rightHeight+1);    }    size_t _GetLeefNode(Node* pRoot)    {        if(pRoot == NULL) //空树            return 0;        if(pRoot->_pLeft == NULL && pRoot->_pRight == NULL)            return 1;  //只有一个根节点的树        return _GetLeefNode(pRoot->_pLeft) + _GetLeefNode(pRoot->_pRight);    }    size_t _GetKLevelNode(Node* pRoot, size_t k)    {        if(pRoot == NULL || k<1 || k>_Height(pRoot))            return 0;        if(k == 1)            return 1;        size_t left = _GetKLevelNode(pRoot->_pLeft, k-1);        size_t right = _GetKLevelNode(pRoot->_pRight, k-1);        return left + right;    }    void _GetBinaryMirror(Node* pRoot)    {        if(pRoot == NULL)            return ;        if(pRoot->_pLeft == NULL && pRoot->_pRight == NULL)            return ;        swap(pRoot->_pLeft, pRoot->_pRight);        if(pRoot->_pLeft)             _GetBinaryMirror(pRoot->_pLeft);        if(pRoot->_pRight)             _GetBinaryMirror(pRoot->_pRight);    }    bool GetNodePath(Node* pRoot, Node* pNode, list<Node*>& path)    {        if(pRoot == pNode)          {                 path.push_back(pRoot);              return true;          }          if(pRoot == NULL)              return false;          path.push_back(pRoot);          bool found = false;         found = GetNodePath(pRoot->_pLeft, pNode, path);  //在左子树中寻找        if(!found)  //在左子树中没有找到,在右子树中寻找            found = GetNodePath(pRoot->_pRight, pNode, path);         if(!found)   //没有找到该节点            path.pop_back();          return found;    }    Node* _GetLastCommonParent(Node* pRoot, Node* Node1, Node* Node2)    {        if(pRoot == NULL || Node1 == NULL || Node2 == NULL)            return NULL;        list<Node*> l1;        bool Result1 = GetNodePath(pRoot, Node1, l1);        list<Node*> l2;        bool Result2 = GetNodePath(pRoot, Node2, l2);        if(!Result1 || !Result2)            return NULL;        Node * pLast = NULL;          list<Node*>::const_iterator iter1 = l1.begin();          list<Node*>::const_iterator iter2 = l2.begin();        while(iter1 != l1.end() && iter2 != l2.end())          {              if(*iter1 == *iter2)                  pLast = *iter1;              else                  break;              iter1++;              iter2++;          }          return pLast;    }private:    BinaryTreeNode<T>* _pRoot;};void FunTest(){    char array[] = "124##5##36##7##";    BinaryTree<char> tree(array, strlen(array), '#');    BinaryTree<char> t(tree);    BinaryTree<char> t1;    t1 = t;    BinaryTreeNode<char>* pCur = NULL;    pCur = t.GetParent(t.Find('1')); //找到节点的双亲节点    if(pCur)        cout<<"结点1的双亲结点为:"<<pCur->_data<<endl;    pCur = t.GetParent(t.Find('2'));    if(pCur)        cout<<"结点2的双亲结点为:"<<pCur->_data<<endl;    pCur = t.GetParent(t.Find('5'));    if(pCur)        cout<<"结点5的双亲结点为:"<<pCur->_data<<endl;    pCur = t.GetLeftChild(t.Find('1')); //找到结点的左孩子    if(pCur)        cout<<"结点1的左孩子为:"<<pCur->_data<<endl;    pCur = t.GetLeftChild(t.Find('3'));    if(pCur)        cout<<"结点2的左孩子为:"<<pCur->_data<<endl;    pCur = t.GetLeftChild(t.Find('6'));    if(pCur)        cout<<"结点6的左孩子为:"<<pCur->_data<<endl;    pCur = t.GetRightChild(t.Find('1')); //找到结点的右孩子    if(pCur)        cout<<"结点1的右孩子为:"<<pCur->_data<<endl;    pCur = t.GetRightChild(t.Find('2'));    if(pCur)        cout<<"结点2的右孩子为:"<<pCur->_data<<endl;    pCur = t.GetRightChild(t.Find('5'));    if(pCur)        cout<<"结点5的右孩子为:"<<pCur->_data<<endl;    cout<<"二叉树的高度:"<<t.Height()<<endl;    cout<<"二叉树的叶子节点:"<<t.GetLeefNode()<<endl;    cout<<"二叉树第三层的节点数:"<<t.GetKLevelNode(3)<<endl;    cout<<"二叉树第二层的节点数:"<<t.GetKLevelNode(2)<<endl;    cout<<"二叉树第一层的节点数:"<<t.GetKLevelNode(1)<<endl;    cout<<"二叉树第四层的节点数:"<<t.GetKLevelNode(4)<<endl;    tree.PreOrder();    t.PreOrder_Nor();    tree.InOrder();    t.InOrder_Nor();    tree.PostOrder();    tree.PostOrder_Nor();    tree.LevelOrder();      tree.GetBinaryMirror_Nor();    tree.GetBinaryMirror();    cout<<"二叉树是不是完全二叉树:"<<t.IsCompleteBinaryTree()<<endl;    pCur = tree.GetLastCommonParent(tree.Find('2'), tree.Find('6'));    if(pCur)        cout<<"结点2和5的公共祖先是"<<pCur->_data<<endl;    char str1[] = {'1', '2', '4', '5', '3', '6', '7'};    char str2[] = {'4', '2', '5', '1', '6', '3', '7'};    tree.RebuildBinaryTree(str1, str2, 7);}int main(){    FunTest();    system("pause");    return 0;}
1 0
原创粉丝点击