Android A/B System OTA分析(二)系统image的生成

来源:互联网 发布:深圳蜂窝网络方成林 编辑:程序博客网 时间:2024/06/03 15:13

Android从7.0开始引入新的OTA升级方式,A/B System Updates,这里将其叫做A/B系统,涉及的内容较多,分多篇对A/B系统的各个方面进行分析。本文为第二篇,系统image的生成。

版权声明:
本文为guyongqiangx原创,欢迎转载,请注明出处:
Android A/B System OTA分析(二)系统image的生成: http://blog.csdn.net/guyongqiangx/article/details/71516768

image这个词的含义很多,这里指编译后可以烧写到设备的文件,如boot.imgsystem.img等,统称为镜像文件吧。

我一直觉得将image翻译成镜像文件怪怪的,如果有更贴切词汇,请一定要告诉我啊,十分感谢。

本文基于AOSP 7.1.1_r23 (NMF27D)代码进行分析。

1. A/B系统和传统方式下镜像内容的比较

传统OTA方式下:

  1. boot.img内有一个boot ramdisk,用于系统启动时加载system.img;
  2. recovery.img内有一个recovery ramdisk,作为recovery系统运行的ramdisk;
  3. system.img只包含android系统的应用程序和库文件;

A/B系统下:

  1. system.img除了包含android系统的应用程序和库文件还,另外含有boot ramdisk,相当于传统OTA下boot.img内的ramdisk存放到system.img内了;
  2. boot.img内包含的是recovery ramdisk,而不是boot ramdisk。Android系统启动时不再加载boot.img内的ramdisk,而是通过device mapper机制选择system.img内的ramdisk进行加载;
  3. 没有recovery.img文件

要想知道系统的各个分区到底有什么东西,跟传统OTA的镜像文件到底有什么区别,需要阅读Makefile,看看每个镜像里面到底打包了哪些文件。

在看系统编译打包文件生成镜像之前,先看看跟A/B相关的到底有哪些变量,以及这些变量有什么作用。

2. A/B系统相关的Makefile变量

这些变量主要有三类:

  • A/B系统必须定义的变量

    • AB_OTA_UPDATER := true
    • AB_OTA_PARTITIONS := boot system vendor
    • BOARD_BUILD_SYSTEM_ROOT_IMAGE := true
    • TARGET_NO_RECOVERY := true
    • BOARD_USES_RECOVERY_AS_BOOT := true
    • PRODUCT_PACKAGES += update_engine update_verifier
  • A/B系统可选定义的变量

    • PRODUCT_PACKAGES_DEBUG += update_engine_client
  • A/B系统不能定义的变量

    • BOARD_RECOVERYIMAGE_PARTITION_SIZE
    • BOARD_CACHEIMAGE_PARTITION_SIZE
    • BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE

以下详细说明这些变量。

  1. 必须定义的变量

    • AB_OTA_UPDATER := true

      A/B系统的主要开关变量,设置后:

      • recovery系统内不再具有操作cache分区的功能,bootable\recovery\device.cpp
      • recovery系统使用不同的方式来解析升级文件,bootable\recovery\install.cpp
      • 生成A/B系统相关的META文件
    • AB_OTA_PARTITIONS := boot system vendor

      • A/B系统可升级的分区写入文件$(zip_root)/META/ab_partitions.txt
    • BOARD_BUILD_SYSTEM_ROOT_IMAGE := true

      将boot ramdisk放到system分区内

    • TARGET_NO_RECOVERY := true

      不再生成recovery.img镜像

    • BOARD_USES_RECOVERY_AS_BOOT := true

      将recovery ramdisk放到boot.img文件内

    • PRODUCT_PACKAGES += update_engine update_verifier

      编译update_engineupdate_verifier模块,并安装相应的应用

  2. 可选的变量

    • PRODUCT_PACKAGES_DEBUG += update_engine_client

      系统自带了一个update_engine_client应用,可以根据需要选择是否编译并安装

  3. 不能定义的变量

    • BOARD_RECOVERYIMAGE_PARTITION_SIZE

      系统没有recovery分区,不需要设置recovery分区的SIZE

    • BOARD_CACHEIMAGE_PARTITION_SIZE

      系统没有cache分区,不需要设置cache分区的SIZE

    • BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE

      系统没有cache分区,不需要设置cache分区的TYPE

3. A/B系统镜像文件的生成

build\core\Makefile定义了所需生成的镜像目标和规则,各镜像规则如下,我直接在代码里进行注释了。

  1. recovery.img

    # A/B系统中,"TARGET_NO_RECOVERY := true",所以条件成立ifeq (,$(filter true, $(TARGET_NO_KERNEL) $(TARGET_NO_RECOVERY)))INSTALLED_RECOVERYIMAGE_TARGET := $(PRODUCT_OUT)/recovery.imgelseINSTALLED_RECOVERYIMAGE_TARGET :=endif

    由于A/B系统定了TARGET_NO_RECOVERY := true,这里INSTALLED_RECOVERYIMAGE_TARGET被设置为空,所以不会生成recovery.img

  2. boot.img

    # 定义boot.img的名字和存放的路径INSTALLED_BOOTIMAGE_TARGET := $(PRODUCT_OUT)/boot.img## 以下error表明:#     BOARD_USES_RECOVERY_AS_BOOT和BOARD_BUILD_SYSTEM_ROOT_IMAGE#     在A/B系统中需要同时被定义为true## BOARD_USES_RECOVERY_AS_BOOT = true must have BOARD_BUILD_SYSTEM_ROOT_IMAGE = true.# BOARD_USES_RECOVERY_AS_BOOT 已经定义为trueifeq ($(BOARD_USES_RECOVERY_AS_BOOT),true) ifneq ($(BOARD_BUILD_SYSTEM_ROOT_IMAGE),true)  # 如果没有定义BOARD_BUILD_SYSTEM_ROOT_IMAGE 则编译终止,并显示错误信息  $(error BOARD_BUILD_SYSTEM_ROOT_IMAGE must be enabled for BOARD_USES_RECOVERY_AS_BOOT.)endifendif...# 好吧,这里才是生成boot.img的地方ifeq ($(BOARD_USES_RECOVERY_AS_BOOT),true)# 对boot.img添加依赖:boot_signer,这里不关心ifeq (true,$(PRODUCTS.$(INTERNAL_PRODUCT).PRODUCT_SUPPORTS_BOOT_SIGNER))$(INSTALLED_BOOTIMAGE_TARGET) : $(BOOT_SIGNER)endif# 对boot.img添加依赖:vboot_signer.sh,这里不关心ifeq (true,$(PRODUCTS.$(INTERNAL_PRODUCT).PRODUCT_SUPPORTS_VBOOT))$(INSTALLED_BOOTIMAGE_TARGET) : $(VBOOT_SIGNER)endif# boot.img的其它依赖,并通过宏build-recoveryimage-target来生成boot.img$(INSTALLED_BOOTIMAGE_TARGET): $(MKBOOTFS) $(MKBOOTIMG) $(MINIGZIP) \        $(INSTALLED_RAMDISK_TARGET) \        $(INTERNAL_RECOVERYIMAGE_FILES) \        $(recovery_initrc) $(recovery_sepolicy) $(recovery_kernel) \        $(INSTALLED_2NDBOOTLOADER_TARGET) \        $(recovery_build_prop) $(recovery_resource_deps) \        $(recovery_fstab) \        $(RECOVERY_INSTALL_OTA_KEYS)        $(call pretty,"Target boot image from recovery: $@")        $(call build-recoveryimage-target, $@)endif## 上面的规则中:#   INSTALLED_BOOTIMAGE_TARGET = $(PRODUCT_OUT)/boot.img# 其依赖的是recovery系统文件,最后通过build-recoveryimage-target打包成boot.img# 这不就是把recovery.img换个名字叫boot.img么?### 再来看看原本的recovery.img的生成规则:#  - A/B 系统下,INSTALLED_RECOVERYIMAGE_TARGET已经定义为空,什么都不做#  - 非A/B 系统下,以下规则会生成recovery.img#$(INSTALLED_RECOVERYIMAGE_TARGET): $(MKBOOTFS) $(MKBOOTIMG) $(MINIGZIP) \        $(INSTALLED_RAMDISK_TARGET) \        $(INSTALLED_BOOTIMAGE_TARGET) \        $(INTERNAL_RECOVERYIMAGE_FILES) \        $(recovery_initrc) $(recovery_sepolicy) $(recovery_kernel) \        $(INSTALLED_2NDBOOTLOADER_TARGET) \        $(recovery_build_prop) $(recovery_resource_deps) \        $(recovery_fstab) \        $(RECOVERY_INSTALL_OTA_KEYS)        $(call build-recoveryimage-target, $@)

    对比A/B系统下boot.img生成方式和非A/B系统下recovery.img的生成方式,基本上是一样的,所以A/B系统下的boot.img相当于非A/B系统下的recovery.img

  3. system.img

    ## build-systemimage-target宏函数定义#     宏函数内部调用build_image.py,从$(TARGET_OUT)目录,即$(PRODUCT_OUT)/system目录创建镜像文件# # $(1): output filedefine build-systemimage-target  @echo "Target system fs image: $(1)"  $(call create-system-vendor-symlink)  @mkdir -p $(dir $(1)) $(systemimage_intermediates) && rm -rf $(systemimage_intermediates)/system_image_info.txt  $(call generate-userimage-prop-dictionary, $(systemimage_intermediates)/system_image_info.txt, \      skip_fsck=true)  $(hide) PATH=$(foreach p,$(INTERNAL_USERIMAGES_BINARY_PATHS),$(p):)$$PATH \      ./build/tools/releasetools/build_image.py \      $(TARGET_OUT) $(systemimage_intermediates)/system_image_info.txt $(1) $(TARGET_OUT) \      || ( echo "Out of space? the tree size of $(TARGET_OUT) is (MB): " 1>&2 ;\           du -sm $(TARGET_OUT) 1>&2;\           if [ "$(INTERNAL_USERIMAGES_EXT_VARIANT)" == "ext4" ]; then \               maxsize=$(BOARD_SYSTEMIMAGE_PARTITION_SIZE); \               if [ "$(BOARD_HAS_EXT4_RESERVED_BLOCKS)" == "true" ]; then \                   maxsize=$$((maxsize - 4096 * 4096)); \               fi; \               echo "The max is $$(( maxsize / 1048576 )) MB." 1>&2 ;\           else \               echo "The max is $$(( $(BOARD_SYSTEMIMAGE_PARTITION_SIZE) / 1048576 )) MB." 1>&2 ;\           fi; \           mkdir -p $(DIST_DIR); cp $(INSTALLED_FILES_FILE) $(DIST_DIR)/installed-files-rescued.txt; \           exit 1 )endef## 调用build-systemimage-target,生成目标文件$(BUILT_SYSTEMIMAGE)# 即:obj\PACKAGING\systemimage_intermediates\system.img文件# $(BUILT_SYSTEMIMAGE): $(FULL_SYSTEMIMAGE_DEPS) $(INSTALLED_FILES_FILE)    # 站住,生成system.img的入口就在这里了    $(call build-systemimage-target,$@)# 定义system.img的名字和存放的路径INSTALLED_SYSTEMIMAGE := $(PRODUCT_OUT)/system.imgSYSTEMIMAGE_SOURCE_DIR := $(TARGET_OUT)...

    看完这段代码我开始有点崩溃了~~
    此前boot.img里面的ramdisk是recovery系统的recovery ramdisk,这里生成system.img也不见哪里添加了ramdisk啊,那系统启动时用recovery的ramdisk挂载system分区么?显然不是啊~~那boot ramdisk到底藏到哪里去了啊?

    木有了办法,那就老老实实看看宏build-systemimage-target的过程吧,调用命令:

    • 第一步,调用$(call create-system-vendor-symlink)创建符号链接
    • 第二步,创建文件夹$(systemimage_intermediates),并删除其中的文件system_image_info.txt
    • 第三步,调用call generate-userimage-prop-dictionary,重新生成系统属性文件system_image_info.txt
    • 第四步,调用build_image.py,根据系统属性文件system_image_info.txtsystem目录$(PRODUCT_OUT)/system创建system.img文件

    显然重点就在第四步了,看看build_image.py到底是如何生成system.img的。

    build_image.py的主程序比较简单:

    • 脚本入口

      # 运行build_image.py脚本的入口,转到main函数if __name__ == '__main__':  main(sys.argv[1:])
    • 主程序main函数

      # 主程序def main(argv):  if len(argv) != 4:    print __doc__    sys.exit(1)  """   * build_image.py的调用命令为:   * ./build/tools/releasetools/build_image.py \   *     $(TARGET_OUT) \   *     $(systemimage_intermediates)/system_image_info.txt \   *     $(systemimage_intermediates)/system.img \   *     $(TARGET_OUT)   *  """  in_dir = argv[0]           # 参数0:in_dir=$(TARGET_OUT)  glob_dict_file = argv[1]   # 参数1:glob_dict_file=$(systemimage_intermediates)/system_image_info.txt  out_file = argv[2]         # 参数2:outfile=$(systemimage_intermediates)/system.img  target_out = argv[3]       # 参数3:target_out=$(TARGET_OUT)  # 解析系统属性的字典文件system_image_info.txt  glob_dict = LoadGlobalDict(glob_dict_file)  if "mount_point" in glob_dict:    # The caller knows the mount point and provides a dictionay needed by    # BuildImage().    image_properties = glob_dict  else:    image_filename = os.path.basename(out_file)    mount_point = ""    # 设置system.img的挂载点为system    if image_filename == "system.img":      mount_point = "system"    ...    else:      print >> sys.stderr, "error: unknown image file name ", image_filename      exit(1)    image_properties = ImagePropFromGlobalDict(glob_dict, mount_point)  # 调用BuildImage函数来创建文件  if not BuildImage(in_dir, image_properties, out_file, target_out):    print >> sys.stderr, "error: failed to build %s from %s" % (out_file,                                                                in_dir)    exit(1)
    • BuildImage函数

      def BuildImage(in_dir, prop_dict, out_file, target_out=None):  ...  # 关键!!!前面改动过了in_dir,所以条件成立  if in_dir != origin_in:    # Construct a staging directory of the root file system.    ramdisk_dir = prop_dict.get("ramdisk_dir")    if ramdisk_dir:      shutil.rmtree(in_dir)      # 将字典system_image_info.txt里"ramdisk_dir"指定的内容复制到临时文件夹in_dir中,并保持原有的符号链接      shutil.copytree(ramdisk_dir, in_dir, symlinks=True)    staging_system = os.path.join(in_dir, "system")    # 删除in_dir/system目录,即删除ramdisk_dir下system目录    shutil.rmtree(staging_system, ignore_errors=True)    # 将origin_in目录的内容复制到ramdisk_dir/system目录下    # 原来的origin_in是指定的$(PRODUCT_OUT)/system目录    # 所以这里的操作是将ramdisk和system的内容合并生成一个完整的文件系统    shutil.copytree(origin_in, staging_system, symlinks=True)  reserved_blocks = prop_dict.get("has_ext4_reserved_blocks") == "true"  ext4fs_output = None  # 继续对合并后完整的文件系统进行其它操作,最后打包为system.img  ...  return exit_code == 0

      显然,build_image.py脚本将ramdisk和system文件夹下的内容合并成一个完整的文件系统,最终输出为system.img,再也不用担心system.img没有rootfs了。

  4. userdata.img

    # Don't build userdata.img if it's extfs but no partition sizeskip_userdata.img :=# 如果TARGET_USERIMAGES_USE_EXT4定义为true,则会进行以下定义:# INTERNAL_USERIMAGES_USE_EXT := true# INTERNAL_USERIMAGES_EXT_VARIANT := ext4# 在vendor相关的deivce下,BoradConfig.mk中会定义BOARD_USERDATAIMAGE_PARTITION_SIZE# 所以这里最终skip_userdata.img仍然为空ifdef INTERNAL_USERIMAGES_EXT_VARIANTifndef BOARD_USERDATAIMAGE_PARTITION_SIZEskip_userdata.img := trueendifendif# skip_userdata.img为空,所以这里会定义userdata.img并生成这个文件ifneq ($(skip_userdata.img),true)userdataimage_intermediates := \    $(call intermediates-dir-for,PACKAGING,userdata)BUILT_USERDATAIMAGE_TARGET := $(PRODUCT_OUT)/userdata.img# 具体生成userdata.img的宏函数define build-userdataimage-target  $(call pretty,"Target userdata fs image: $(INSTALLED_USERDATAIMAGE_TARGET)")  @mkdir -p $(TARGET_OUT_DATA)  @mkdir -p $(userdataimage_intermediates) && rm -rf $(userdataimage_intermediates)/userdata_image_info.txt  $(call generate-userimage-prop-dictionary, $(userdataimage_intermediates)/userdata_image_info.txt, skip_fsck=true)  $(hide) PATH=$(foreach p,$(INTERNAL_USERIMAGES_BINARY_PATHS),$(p):)$$PATH \      ./build/tools/releasetools/build_image.py \      $(TARGET_OUT_DATA) $(userdataimage_intermediates)/userdata_image_info.txt $(INSTALLED_USERDATAIMAGE_TARGET) $(TARGET_OUT)  $(hide) $(call assert-max-image-size,$(INSTALLED_USERDATAIMAGE_TARGET),$(BOARD_USERDATAIMAGE_PARTITION_SIZE))endef# 好吧,这里才是真正调用build-userdataimage-target去生成userdata.img的规则# We just build this directly to the install location.INSTALLED_USERDATAIMAGE_TARGET := $(BUILT_USERDATAIMAGE_TARGET)$(INSTALLED_USERDATAIMAGE_TARGET): $(INTERNAL_USERIMAGES_DEPS) \                                   $(INTERNAL_USERDATAIMAGE_FILES)    # 生成userdata.img的入口就这里了    $(build-userdataimage-target)

    这里的步骤跟生成system.img基本一致,宏函数build-userdataimage-target内通过build_image.py来将$(PRODUCT_OUT)/data目录内容打包生成userdata.img,不同的是,这里不再需要放入ramdisk的内容。

    显然,userdata.img的生成跟是否是A/B系统没有关系。

  5. cache.img

    # cache partition image# `A/B`系统中 BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE 没有定义,这里条件不能满足,所以不会生成cache.imgifdef BOARD_CACHEIMAGE_FILE_SYSTEM_TYPEINTERNAL_CACHEIMAGE_FILES := \    $(filter $(TARGET_OUT_CACHE)/%,$(ALL_DEFAULT_INSTALLED_MODULES))cacheimage_intermediates := \    $(call intermediates-dir-for,PACKAGING,cache)BUILT_CACHEIMAGE_TARGET := $(PRODUCT_OUT)/cache.img...# We just build this directly to the install location.# 这里是真正去生成cache.img的地方,可惜`A/B`系统下不会再有调用了INSTALLED_CACHEIMAGE_TARGET := $(BUILT_CACHEIMAGE_TARGET)$(INSTALLED_CACHEIMAGE_TARGET): $(INTERNAL_USERIMAGES_DEPS) $(INTERNAL_CACHEIMAGE_FILES)    $(build-cacheimage-target)...else # BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE# we need to ignore the broken cache link when doing the rsyncIGNORE_CACHE_LINK := --exclude=cacheendif # BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE

    于A/B系统定了没有定义BOARD_CACHEIMAGE_FILE_SYSTEM_TYPE,这里BUILT_CACHEIMAGE_TARGET也不会定义,所以不会生成cache.img

  6. vendor.img

    # vendor partition image# 如果系统内有定义BOARD_VENDORIMAGE_FILE_SYSTEM_TYPE,则这里会生成vendor.imgifdef BOARD_VENDORIMAGE_FILE_SYSTEM_TYPE# 定义vendor系统内包含的所有文件INTERNAL_VENDORIMAGE_FILES := \    $(filter $(TARGET_OUT_VENDOR)/%,\      $(ALL_DEFAULT_INSTALLED_MODULES)\      $(ALL_PDK_FUSION_FILES))# platform.zip depends on $(INTERNAL_VENDORIMAGE_FILES).$(INSTALLED_PLATFORM_ZIP) : $(INTERNAL_VENDORIMAGE_FILES)# vendor的文件列表:installed-files-vendor.txtINSTALLED_FILES_FILE_VENDOR := $(PRODUCT_OUT)/installed-files-vendor.txt$(INSTALLED_FILES_FILE_VENDOR) : $(INTERNAL_VENDORIMAGE_FILES)    @echo Installed file list: $@    @mkdir -p $(dir $@)    @rm -f $@    $(hide) build/tools/fileslist.py $(TARGET_OUT_VENDOR) > $@# vendor.img目标vendorimage_intermediates := \    $(call intermediates-dir-for,PACKAGING,vendor)BUILT_VENDORIMAGE_TARGET := $(PRODUCT_OUT)/vendor.img# 定义生成vendor.img的宏函数build-vendorimage-targetdefine build-vendorimage-target  $(call pretty,"Target vendor fs image: $(INSTALLED_VENDORIMAGE_TARGET)")  @mkdir -p $(TARGET_OUT_VENDOR)  @mkdir -p $(vendorimage_intermediates) && rm -rf $(vendorimage_intermediates)/vendor_image_info.txt  $(call generate-userimage-prop-dictionary, $(vendorimage_intermediates)/vendor_image_info.txt, skip_fsck=true)  $(hide) PATH=$(foreach p,$(INTERNAL_USERIMAGES_BINARY_PATHS),$(p):)$$PATH \      ./build/tools/releasetools/build_image.py \      $(TARGET_OUT_VENDOR) $(vendorimage_intermediates)/vendor_image_info.txt $(INSTALLED_VENDORIMAGE_TARGET) $(TARGET_OUT)  $(hide) $(call assert-max-image-size,$(INSTALLED_VENDORIMAGE_TARGET),$(BOARD_VENDORIMAGE_PARTITION_SIZE))endef# We just build this directly to the install location.# 生成vendor.img的依赖和规则INSTALLED_VENDORIMAGE_TARGET := $(BUILT_VENDORIMAGE_TARGET)$(INSTALLED_VENDORIMAGE_TARGET): $(INTERNAL_USERIMAGES_DEPS) $(INTERNAL_VENDORIMAGE_FILES) $(INSTALLED_FILES_FILE_VENDOR)    $(build-vendorimage-target).PHONY: vendorimage-nodepsvendorimage-nodeps: | $(INTERNAL_USERIMAGES_DEPS)    $(build-vendorimage-target)# 如果定义了BOARD_PREBUILT_VENDORIMAGE,说明已经预备好了vendor.img,那就直接复制到目标位置else ifdef BOARD_PREBUILT_VENDORIMAGEINSTALLED_VENDORIMAGE_TARGET := $(PRODUCT_OUT)/vendor.img$(eval $(call copy-one-file,$(BOARD_PREBUILT_VENDORIMAGE),$(INSTALLED_VENDORIMAGE_TARGET)))endif

    显然,vendor.img跟是否是A/B系统没有关系,主要看系统是否定义了BOARD_VENDORIMAGE_FILE_SYSTEM_TYPE

到此为止,我们已经分析了除升级包update.zip外的主要文件的生成,包括recovery.imgboot.imgsystem.imguserdata.imgcache.imgvendor.img

总结:

  • recovery.img,不再单独生成,传统方式的recovery.img现在叫做boot.img
  • boot.img,包含kernelrecovery模式的ramdisk
  • system.img,传统方式下system.img$(PRODUCT_OUT)/system文件夹打包而成,A/B系统下,制作时将$(PRODUCT_OUT)/root$(PRODUCT_OUT)/system合并到一起,生成一个完整的带有rootfssystem.img
  • userdata.img,跟原来一样,打包$(PRODUCT_OUT)/data文件夹而成
  • cache.imgA/B系统下不再单独生成cache.img
  • vendor.img,文件的生成跟是否A/B系统无关,主要有厂家决定

现在的情况是,设备启动后bootloader解析boot.img得到kernel文件,启动linux进入系统,然后加载Android主系统system,但是boot.imgsystem.img两个镜像内都有rootfs,这个启动是如何启动,那这个到底是怎么搞的呢?下一篇会对这个启动流程详细分析。

1 0