机器学习知识点(三十)LDA话题模型Java实现

来源:互联网 发布:胡公子淘宝店 编辑:程序博客网 时间:2024/05/22 03:37

1、LDA数学定义

1)话题模型:传统的文本分类器,比如贝叶斯、kNN和SVM,只能将其分到一个确定的类别中。假设我给出3个分类“算法”“分词”“文学”让其判断,如果某个分类器将该文归入算法类,我觉得还凑合,如果分入分词,那我觉得这个分类器不够准确。

假设一个文艺小青年来看我的博客,他完全不懂算法和分词,自然也给不出具体的备选类别,有没有一种模型能够告诉这个白痴,这篇文章很可能(80%)是在讲算法,也可能(19%)是在讲分词,几乎不可能(1%)是在讲其它主题呢?


有,这样的模型就是话题模型。

2)LDA概念

潜在狄立克雷分配(Latent Dirichlet Allocation,LDA)主题模型是最简单的主题模型,它描述的是一篇文章是如何产生的。如图所示:


从左往右看,一个主题是由一些词语的分布定义的,比如蓝色主题是由2%几率的data,2%的number……构成的。一篇文章则是由一些主题构成的,比如右边的直方图。具体产生过程是,从主题集合中按概率分布选取一些主题,从该主题中按概率分布选取一些词语,这些词语构成了最终的文档(LDA模型中,词语的无序集合构成文档,也就是说词语的顺序没有关系)。


如果我们能将上述两个概率分布计算清楚,那么我们就得到了一个模型,该模型可以根据某篇文档推断出它的主题分布,即分类。由文档推断主题是文档生成过程的逆过程。


在《LDA数学八卦》一文中,对文档的生成过程有个很形象的描述:


3)概率模型

LDA是一种使用联合分布来计算在给定观测变量下隐藏变量的条件分布(后验分布)的概率模型,观测变量为词的集合,隐藏变量为主题。

联合分布

LDA的生成过程对应的观测变量和隐藏变量的联合分布如下:

式子有点长,耐心地从左往右看:

式子的基本符号约定——β表示主题,θ表示主题的概率,z表示特定文档或词语的主题,w为词语。进一步说——

β1:K为全体主题集合,其中βk是第k个主题的词的分布(如图1左部所示)。第d个文档中该主题所占的比例为θd,其中θd,k表示第k个主题在第d个文档中的比例(图1右部的直方图)。第d个文档的主题全体为zd其中zd,n是第d个文档中第n个词的主题(如图1中有颜色的圆圈)。第d个文档中所有词记为wd,其中wd,n是第d个文档中第n个词,每个词都是固定的词汇表中的元素。

p(β)表示从主题集合中选取了一个特定主题,p(θd)表示该主题在特定文档中的概率,大括号的前半部分是该主题确定时该文档第n个词的主题,后半部分是该文档第n个词的主题与该词的联合分布。连乘符号描述了随机变量的依赖性,用概率图模型表述如下:

比如,先选取了主题,才能从主题里选词。具体说来,一个词受两个随机变量的影响(直接或间接),一个是确定了主题后文档中该主题的分布θd,另一种是第k个主题的词的分布βk(也就是图2中的第二个坛子)。

后验分布

沿用相同的符号,LDA后验分布计算公式如下:

分子是一个联合分布,给定语料库就可以轻松统计出来。但分母无法暴力计算,因为文档集合词库达到百万(假设有w个词语),每个词要计算每一种可能的观测的组合(假设有n种组合)的概率然后累加得到先验概率,所以需要一种近似算法。

基于采样的算法通过收集后验分布的样本,以样本的分布求得后验分布的近似。

θd的概率服从Dirichlet分布,zd,n的分布服从multinomial分布,两个分布共轭,所谓共轭,指的就是先验分布和后验分布的形式相同:

两个分布其实是向量的分布,向量通过这两个分布取样得到。采样方法通过收集这两个分布的样本,以样本的分布近似。

4)马氏链和Gibbs Sampling

这是一种统计模拟的方法。

马氏链

所谓马氏链指的是当前状态只取决于上一个状态。马氏链有一个重要的性质:状态转移矩阵P的幂是收敛的,收敛后的转移矩阵称为马氏链的平稳分布。给定p(x),假如能够构造一个P,转移n步平稳分布恰好是p(x)。那么任取一个初始状态,转移n步之后的状态都是符合分布的样本。

Gibbs Sampling

Gibbs Sampling是高维分布(也即类似于二维p(x,y),三维p(x,y,z)的分布)的特化采样算法。

2、代码:
   参考:https://github.com/hankcs/LDA4j
   源于Gregor Heinrich的LdaGibbsSampler.java类。

  

/* * (C) Copyright 2005, Gregor Heinrich (gregor :: arbylon : net) (This file is * part of the org.knowceans experimental software packages.) *//* * LdaGibbsSampler is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) any * later version. *//* * LdaGibbsSampler is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. *//* * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place, Suite 330, Boston, MA 02111-1307 USA *//* * Created on Mar 6, 2005 */package sk.ml;import java.text.DecimalFormat;import java.text.NumberFormat;/** * Gibbs sampler for estimating the best assignments of topics for words and * documents in a corpus. The algorithm is introduced in Tom Griffiths' paper * "Gibbs sampling in the generative model of Latent Dirichlet Allocation" * (2002).<br> * Gibbs sampler采样算法的实现 * * @author heinrich */public class LdaGibbsSampler {    /**     * document data (term lists)<br>     * 文档     */    int[][] documents;    /**     * vocabulary size<br>     * 词表大小     */    int V;    /**     * number of topics<br>     * 主题数目     */    int K;    /**     * Dirichlet parameter (document--topic associations)<br>     * 文档——主题参数     */    double alpha = 2.0;    /**     * Dirichlet parameter (topic--term associations)<br>     * 主题——词语参数     */    double beta = 0.5;    /**     * topic assignments for each word.<br>     * 每个词语的主题 z[i][j] := 文档i的第j个词语的主题编号     */    int z[][];    /**     * cwt[i][j] number of instances of word i (term?) assigned to topic j.<br>     * 计数器,nw[i][j] := 词语i归入主题j的次数     */    int[][] nw;    /**     * na[i][j] number of words in document i assigned to topic j.<br>     * 计数器,nd[i][j] := 文档[i]中归入主题j的词语的个数     */    int[][] nd;    /**     * nwsum[j] total number of words assigned to topic j.<br>     * 计数器,nwsum[j] := 归入主题j词语的个数     */    int[] nwsum;    /**     * nasum[i] total number of words in document i.<br>     * 计数器,ndsum[i] := 文档i中全部词语的数量     */    int[] ndsum;    /**     * cumulative statistics of theta<br>     * theta的累积量     */    double[][] thetasum;    /**     * cumulative statistics of phi<br>     * phi的累积量     */    double[][] phisum;    /**     * size of statistics<br>     * 样本容量     */    int numstats;    /**     * sampling lag (?)<br>     * 多久更新一次统计量     */    private static int THIN_INTERVAL = 20;    /**     * burn-in period<br>     * 收敛前的迭代次数     */    private static int BURN_IN = 100;    /**     * max iterations<br>     * 最大迭代次数     */    private static int ITERATIONS = 1000;    /**     * sample lag (if -1 only one sample taken)<br>     * 最后的模型个数(取收敛后的n个迭代的参数做平均可以使得模型质量更高)     */    private static int SAMPLE_LAG = 10;    private static int dispcol = 0;    /**     * Initialise the Gibbs sampler with data.<br>     * 用数据初始化采样器     *     * @param documents 文档     * @param V         vocabulary size 词表大小     */    public LdaGibbsSampler(int[][] documents, int V) {        this.documents = documents;        this.V = V;    }    /**     * Initialisation: Must start with an assignment of observations to topics ?     * Many alternatives are possible, I chose to perform random assignments     * with equal probabilities<br>     * 随机初始化状态     *     * @param K number of topics K个主题     */    public void initialState(int K) {        int M = documents.length;        // initialise count variables. 初始化计数器        nw = new int[V][K];        nd = new int[M][K];        nwsum = new int[K];        ndsum = new int[M];        // The z_i are are initialised to values in [1,K] to determine the        // initial state of the Markov chain.        z = new int[M][];   // z_i := 1到K之间的值,表示马氏链的初始状态        for (int m = 0; m < M; m++) {            int N = documents[m].length;            z[m] = new int[N];            for (int n = 0; n < N; n++) {                int topic = (int) (Math.random() * K);                z[m][n] = topic;                // number of instances of word i assigned to topic j                nw[documents[m][n]][topic]++;                // number of words in document i assigned to topic j.                nd[m][topic]++;                // total number of words assigned to topic j.                nwsum[topic]++;            }            // total number of words in document i            ndsum[m] = N;        }    }    public void gibbs(int K) {        gibbs(K, 2.0, 0.5);    }    /**     * Main method: Select initial state ? Repeat a large number of times: 1.     * Select an element 2. Update conditional on other elements. If     * appropriate, output summary for each run.<br>     * 采样     *     * @param K     number of topics 主题数     * @param alpha symmetric prior parameter on document--topic associations 对称文档——主题先验概率?     * @param beta  symmetric prior parameter on topic--term associations 对称主题——词语先验概率?     */    public void gibbs(int K, double alpha, double beta) {        this.K = K;        this.alpha = alpha;        this.beta = beta;        // init sampler statistics  分配内存        if (SAMPLE_LAG > 0) {            thetasum = new double[documents.length][K];            phisum = new double[K][V];            numstats = 0;        }        // initial state of the Markov chain:        initialState(K);        System.out.println("Sampling " + ITERATIONS                + " iterations with burn-in of " + BURN_IN + " (B/S="                + THIN_INTERVAL + ").");        for (int i = 0; i < ITERATIONS; i++) {            // for all z_i            for (int m = 0; m < z.length; m++) {                for (int n = 0; n < z[m].length; n++) {                    // (z_i = z[m][n])                    // sample from p(z_i|z_-i, w)                    int topic = sampleFullConditional(m, n);                    z[m][n] = topic;                }            }            if ((i < BURN_IN) && (i % THIN_INTERVAL == 0)) {                System.out.print("B");                dispcol++;            }            // display progress            if ((i > BURN_IN) && (i % THIN_INTERVAL == 0)) {                System.out.print("S");                dispcol++;            }            // get statistics after burn-in            if ((i > BURN_IN) && (SAMPLE_LAG > 0) && (i % SAMPLE_LAG == 0)) {                updateParams();                System.out.print("|");                if (i % THIN_INTERVAL != 0)                    dispcol++;            }            if (dispcol >= 100) {                System.out.println();                dispcol = 0;            }        }        System.out.println();    }    /**     * Sample a topic z_i from the full conditional distribution: p(z_i = j |     * z_-i, w) = (n_-i,j(w_i) + beta)/(n_-i,j(.) + W * beta) * (n_-i,j(d_i) +     * alpha)/(n_-i,.(d_i) + K * alpha) <br>     * 根据上述公式计算文档m中第n个词语的主题的完全条件分布,输出最可能的主题     *     * @param m document     * @param n word     */    private int sampleFullConditional(int m, int n) {        // remove z_i from the count variables  先将这个词从计数器中抹掉        int topic = z[m][n];        nw[documents[m][n]][topic]--;        nd[m][topic]--;        nwsum[topic]--;        ndsum[m]--;        // do multinomial sampling via cumulative method: 通过多项式方法采样多项式分布        double[] p = new double[K];        for (int k = 0; k < K; k++) {            p[k] = (nw[documents[m][n]][k] + beta) / (nwsum[k] + V * beta)                    * (nd[m][k] + alpha) / (ndsum[m] + K * alpha);        }        // cumulate multinomial parameters  累加多项式分布的参数        for (int k = 1; k < p.length; k++) {            p[k] += p[k - 1];        }        // scaled sample because of unnormalised p[] 正则化        double u = Math.random() * p[K - 1];        for (topic = 0; topic < p.length; topic++) {            if (u < p[topic])                break;        }        // add newly estimated z_i to count variables   将重新估计的该词语加入计数器        nw[documents[m][n]][topic]++;        nd[m][topic]++;        nwsum[topic]++;        ndsum[m]++;        return topic;    }    /**     * Add to the statistics the values of theta and phi for the current state.<br>     * 更新参数     */    private void updateParams() {        for (int m = 0; m < documents.length; m++) {            for (int k = 0; k < K; k++) {                thetasum[m][k] += (nd[m][k] + alpha) / (ndsum[m] + K * alpha);            }        }        for (int k = 0; k < K; k++) {            for (int w = 0; w < V; w++) {                phisum[k][w] += (nw[w][k] + beta) / (nwsum[k] + V * beta);            }        }        numstats++;    }    /**     * Retrieve estimated document--topic associations. If sample lag > 0 then     * the mean value of all sampled statistics for theta[][] is taken.<br>     * 获取文档——主题矩阵     *     * @return theta multinomial mixture of document topics (M x K)     */    public double[][] getTheta() {        double[][] theta = new double[documents.length][K];        if (SAMPLE_LAG > 0) {            for (int m = 0; m < documents.length; m++) {                for (int k = 0; k < K; k++) {                    theta[m][k] = thetasum[m][k] / numstats;                }            }        } else {            for (int m = 0; m < documents.length; m++) {                for (int k = 0; k < K; k++) {                    theta[m][k] = (nd[m][k] + alpha) / (ndsum[m] + K * alpha);                }            }        }        return theta;    }    /**     * Retrieve estimated topic--word associations. If sample lag > 0 then the     * mean value of all sampled statistics for phi[][] is taken.<br>     * 获取主题——词语矩阵     *     * @return phi multinomial mixture of topic words (K x V)     */    public double[][] getPhi() {        double[][] phi = new double[K][V];        if (SAMPLE_LAG > 0) {            for (int k = 0; k < K; k++) {                for (int w = 0; w < V; w++) {                    phi[k][w] = phisum[k][w] / numstats;                }            }        } else {            for (int k = 0; k < K; k++) {                for (int w = 0; w < V; w++) {                    phi[k][w] = (nw[w][k] + beta) / (nwsum[k] + V * beta);                }            }        }        return phi;    }    /**     * Print table of multinomial data     *     * @param data vector of evidence     * @param fmax max frequency in display     * @return the scaled histogram bin values     */    public static void hist(double[] data, int fmax) {        double[] hist = new double[data.length];        // scale maximum        double hmax = 0;        for (int i = 0; i < data.length; i++) {            hmax = Math.max(data[i], hmax);        }        double shrink = fmax / hmax;        for (int i = 0; i < data.length; i++) {            hist[i] = shrink * data[i];        }        NumberFormat nf = new DecimalFormat("00");        String scale = "";        for (int i = 1; i < fmax / 10 + 1; i++) {            scale += "    .    " + i % 10;        }        System.out.println("x" + nf.format(hmax / fmax) + "\t0" + scale);        for (int i = 0; i < hist.length; i++) {            System.out.print(i + "\t|");            for (int j = 0; j < Math.round(hist[i]); j++) {                if ((j + 1) % 10 == 0)                    System.out.print("]");                else                    System.out.print("|");            }            System.out.println();        }    }    /**     * Configure the gibbs sampler<br>     * 配置采样器     *     * @param iterations   number of total iterations     * @param burnIn       number of burn-in iterations     * @param thinInterval update statistics interval     * @param sampleLag    sample interval (-1 for just one sample at the end)     */    public void configure(int iterations, int burnIn, int thinInterval,                          int sampleLag) {        ITERATIONS = iterations;        BURN_IN = burnIn;        THIN_INTERVAL = thinInterval;        SAMPLE_LAG = sampleLag;    }    /**     * Inference a new document by a pre-trained phi matrix     *     * @param phi pre-trained phi matrix     * @param doc document     * @return a p array     */    public static double[] inference(double alpha, double beta, double[][] phi, int[] doc) {        int K = phi.length;        int V = phi[0].length;        // init        // initialise count variables. 初始化计数器        int[][] nw = new int[V][K];        int[] nd = new int[K];        int[] nwsum = new int[K];        int ndsum = 0;        // The z_i are are initialised to values in [1,K] to determine the        // initial state of the Markov chain.        int N = doc.length;        int[] z = new int[N];   // z_i := 1到K之间的值,表示马氏链的初始状态        for (int n = 0; n < N; n++) {            int topic = (int) (Math.random() * K);            z[n] = topic;            // number of instances of word i assigned to topic j            nw[doc[n]][topic]++;            // number of words in document i assigned to topic j.            nd[topic]++;            // total number of words assigned to topic j.            nwsum[topic]++;        }        // total number of words in document i        ndsum = N;        for (int i = 0; i < ITERATIONS; i++) {            for (int n = 0; n < z.length; n++) {                // (z_i = z[m][n])                // sample from p(z_i|z_-i, w)                // remove z_i from the count variables  先将这个词从计数器中抹掉                int topic = z[n];                nw[doc[n]][topic]--;                nd[topic]--;                nwsum[topic]--;                ndsum--;                // do multinomial sampling via cumulative method: 通过多项式方法采样多项式分布                double[] p = new double[K];                for (int k = 0; k < K; k++) {                    p[k] = phi[k][doc[n]]                            * (nd[k] + alpha) / (ndsum + K * alpha);                }                // cumulate multinomial parameters  累加多项式分布的参数                for (int k = 1; k < p.length; k++) {                    p[k] += p[k - 1];                }                // scaled sample because of unnormalised p[] 正则化                double u = Math.random() * p[K - 1];                for (topic = 0; topic < p.length; topic++) {                    if (u < p[topic])                        break;                }                if (topic == K) {                    throw new RuntimeException("the param K or topic is set too small");                }                // add newly estimated z_i to count variables   将重新估计的该词语加入计数器                nw[doc[n]][topic]++;                nd[topic]++;                nwsum[topic]++;                ndsum++;                z[n] = topic;            }        }        double[] theta = new double[K];        for (int k = 0; k < K; k++) {            theta[k] = (nd[k] + alpha) / (ndsum + K * alpha);        }        return theta;    }    public static double[] inference(double[][] phi, int[] doc) {        return inference(2.0, 0.5, phi, doc);    }    /**     * Driver with example data.<br>     * 测试入口     *     * @param args     */    public static void main(String[] args) {        // words in documents        int[][] documents = {                {1, 4, 3, 2, 3, 1, 4, 3, 2, 3, 1, 4, 3, 2, 3, 6},                {2, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2},                {1, 6, 5, 6, 0, 1, 6, 5, 6, 0, 1, 6, 5, 6, 0, 0},                {5, 6, 6, 2, 3, 3, 6, 5, 6, 2, 2, 6, 5, 6, 6, 6, 0},                {2, 2, 4, 4, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 0},                {5, 4, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2}};  // 文档的词语id集合        // vocabulary        int V = 7;                                      // 词表大小        int M = documents.length;        // # topics        int K = 2;                                      // 主题数目        // good values alpha = 2, beta = .5        double alpha = 2;        double beta = .5;        System.out.println("Latent Dirichlet Allocation using Gibbs Sampling.");        LdaGibbsSampler lda = new LdaGibbsSampler(documents, V);        lda.configure(10000, 2000, 100, 10);        lda.gibbs(K, alpha, beta);        double[][] theta = lda.getTheta();        double[][] phi = lda.getPhi();        System.out.println();        System.out.println();        System.out.println("Document--Topic Associations, Theta[d][k] (alpha="                + alpha + ")");        System.out.print("d\\k\t");        for (int m = 0; m < theta[0].length; m++) {            System.out.print("   " + m % 10 + "    ");        }        System.out.println();        for (int m = 0; m < theta.length; m++) {            System.out.print(m + "\t");            for (int k = 0; k < theta[m].length; k++) {                // System.out.print(theta[m][k] + " ");                System.out.print(shadeDouble(theta[m][k], 1) + " ");            }            System.out.println();        }        System.out.println();        System.out.println("Topic--Term Associations, Phi[k][w] (beta=" + beta                + ")");        System.out.print("k\\w\t");        for (int w = 0; w < phi[0].length; w++) {            System.out.print("   " + w % 10 + "    ");        }        System.out.println();        for (int k = 0; k < phi.length; k++) {            System.out.print(k + "\t");            for (int w = 0; w < phi[k].length; w++) {                // System.out.print(phi[k][w] + " ");                System.out.print(shadeDouble(phi[k][w], 1) + " ");            }            System.out.println();        }        // Let's inference a new document        int[] aNewDocument = {2, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 2};        double[] newTheta = inference(alpha, beta, phi, aNewDocument);        for (int k = 0; k < newTheta.length; k++) {            // System.out.print(theta[m][k] + " ");            System.out.print(shadeDouble(newTheta[k], 1) + " ");        }        System.out.println();    }    static String[] shades = {"     ", ".    ", ":    ", ":.   ", "::   ",            "::.  ", ":::  ", ":::. ", ":::: ", "::::.", ":::::"};    static NumberFormat lnf = new DecimalFormat("00E0");    /**     * create a string representation whose gray value appears as an indicator     * of magnitude, cf. Hinton diagrams in statistics.     *     * @param d   value     * @param max maximum value     * @return     */    public static String shadeDouble(double d, double max) {        int a = (int) Math.floor(d * 10 / max + 0.5);        if (a > 10 || a < 0) {            String x = lnf.format(d);            a = 5 - x.length();            for (int i = 0; i < a; i++) {                x += " ";            }            return "<" + x + ">";        }        return "[" + shades[a] + "]";    }}

要理解这段代码,还是要深入其定义的数学形式,统计学方面相关的分布知识。

参考:http://www.hankcs.com/nlp/lda-java-introduction-and-implementation.html

对于机器学习的很多知识点,目前先汇聚起来,后续需要应用时一个个专题研究。