10 Minutes to pandas

来源:互联网 发布:淘宝时尚韩国女装店铺 编辑:程序博客网 时间:2024/06/06 04:28

最近在看pandas,之前一致用SQL做数据处理,对于线下的小数据量,的确是pandas功能简洁实用,而且方便可视化操作。翻译来自于pandas官方网站上《10 Minutes to pandas》,首先是引入所需的包

import pandas as pdimport numpy as npimport matplotlib.pyplot as plt

创建对象

具体见Data Structure Intro section

  • 通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
s = pd.Series([1,3,5,np.nan,6,8])# Out[5]:# 0    1.0# 1    3.0# 2    5.0# 3    NaN# 4    6.0# 5    8.0# dtype: float64
  • 通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
dates = pd.date_range('20130101', periods=6)# DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',#                '2013-01-05', '2013-01-06'],#               dtype='datetime64[ns]', freq='D')df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))#                  A         B         C         D# 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804# 2013-01-04  0.721555 -0.706771 -1.039575  0.271860# 2013-01-05 -0.424972  0.567020  0.276232 -1.087401# 2013-01-06 -0.673690  0.113648 -1.478427  0.524988
  • 通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
df2 = pd.DataFrame({'A': 1.,                    'B': pd.Timestamp('20130102'),                    'C': pd.Series(1, index=list(range(4)), dtype='float32'),                    'D': np.array([3] * 4, dtype='int32'),                    'E': pd.Categorical(["test", "train", "test", "train"]),                    'F': 'foo'})#      A          B    C  D      E    F# 0  1.0 2013-01-02  1.0  3   test  foo# 1  1.0 2013-01-02  1.0  3  train  foo# 2  1.0 2013-01-02  1.0  3   test  foo# 3  1.0 2013-01-02  1.0  3  train  foo
  • 查看不同列的数据类型:
df2.dtypes# A           float64# B    datetime64[ns]# C           float32# D             int32# E          category# F            object# dtype: object
  • 如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列.
df2.<TAB># df2.A                  df2.bool# ...

查看数据

来源Basics section

  • 查看frame中头部和尾部的行
df.head()# 头部,默认5行,可以指定显示行数。#                    A         B         C         D# 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804# 2013-01-04  0.721555 -0.706771 -1.039575  0.271860# 2013-01-05 -0.424972  0.567020  0.276232 -1.087401df.tail(3)# 尾部#                    A         B         C         D# 2013-01-04  0.721555 -0.706771 -1.039575  0.271860# 2013-01-05 -0.424972  0.567020  0.276232 -1.087401# 2013-01-06 -0.673690  0.113648 -1.478427  0.524988
  • 显示索引、列和底层的numpy数据
df.index    # 显示索引# [2013-01-01, ..., 2013-01-06]df.columns  # 列# Index(['A', 'B', 'C', 'D'], dtype='object')df.values   # 数据# array([[ 0.4691, -0.2829, -1.5091, -1.1356],...])
  • describe()函数对于数据的快速统计汇总
df.describe()#               A         B         C         D# count  6.000000  6.000000  6.000000  6.000000# mean   0.073711 -0.431125 -0.687758 -0.233103# std    0.843157  0.922818  0.779887  0.973118# min   -0.861849 -2.104569 -1.509059 -1.135632# 25%   -0.611510 -0.600794 -1.368714 -1.076610# 50%    0.022070 -0.228039 -0.767252 -0.386188# 75%    0.658444  0.041933 -0.034326  0.461706# max    1.212112  0.567020  0.276232  1.071804
  • 转置
df.T
  • 按轴进行排序
df.sort_index(axis=1, ascending=False)  # 即按列名排序,交换列位置。
  • 按值进行排序
df.sort_values(by='B')  # 按照列B的值升序排序

选择-Selection

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix

详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。

获取-Getting

  • 选择一个单独的列,这将会返回一个Series,等同于df.A
df['A']
  • 通过[]进行选择,这将会对行进行切片
df[0:3]#                    A         B         C         D# 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804 df['20130102':'20130104']#                    A         B         C         D# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804# 2013-01-04  0.721555 -0.706771 -1.039575  0.271860

通过标签选择-Selection by Label

参考Selection by Label

  • 使用标签来获取一个交叉的区域
df.loc[dates[0]]# A    0.469112# B   -0.282863# C   -1.509059# D   -1.135632# Name: 2013-01-01 00:00:00, dtype: float64
  • 通过标签来在多个轴上进行选择
df.loc[:,['A','B']]#                    A         B# 2013-01-01  0.469112 -0.282863# 2013-01-02  1.212112 -0.173215# 2013-01-03 -0.861849 -2.104569# 2013-01-04  0.721555 -0.706771# 2013-01-05 -0.424972  0.567020# 2013-01-06 -0.673690  0.113648
  • 标签切片
df.loc['20130102':'20130104',['A','B']]# Out[28]: #                    A         B# 2013-01-02  1.212112 -0.173215# 2013-01-03 -0.861849 -2.104569# 2013-01-04  0.721555 -0.706771
  • 对于返回的对象进行维度缩减
df.loc['20130102',['A','B']]# Out[29]: # A    1.212112# B   -0.173215# Name: 2013-01-02 00:00:00, dtype: float64
  • 获取一个标量
df.loc[dates[0],'A']# Out[30]: 0.46911229990718628
  • 快速访问一个标量(与上一个方法等价)
df.at[dates[0],'A']# Out[31]: 0.46911229990718628

通过位置选择-Selection by Position

详情Selection by Position

  • 通过传递数值进行位置选择(选择的是行)
In [32]: df.iloc[3]# Out[32]: # A    0.721555# B   -0.706771# C   -1.039575# D    0.271860# Name: 2013-01-04 00:00:00, dtype: float64
  • 通过数值进行切片,与numpy/python中的情况类似
df.iloc[3:5,0:2]# Out[33]: #                    A         B# 2013-01-04  0.721555 -0.706771# 2013-01-05 -0.424972  0.567020
  • 通过指定一个位置的列表,与numpy/python中的情况类似
df.iloc[[1,2,4],[0,2]]# Out[34]: #                    A         C# 2013-01-02  1.212112  0.119209# 2013-01-03 -0.861849 -0.494929# 2013-01-05 -0.424972  0.276232
  • 对行进行切片
df.iloc[1:3,:]  # 1,2行# Out[35]: #                    A         B         C         D# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
  • 对列进行切片
df.iloc[:,1:3]  # 1,2列# Out[36]: #                    B         C# 2013-01-01 -0.282863 -1.509059# # 2013-01-02 -0.173215  0.119209# 2013-01-03 -2.104569 -0.494929# 2013-01-04 -0.706771 -1.039575# 2013-01-05  0.567020  0.276232# 2013-01-06  0.113648 -1.478427
  • 获取特定的值
df.iloc[1,1]# Out[37]: -0.17321464905330858# For getting fast access to a scalardf.iat[1,1]# Out[38]: -0.17321464905330858

布尔索引

  • 使用一个单独列的值来选择数据
df[df.A > 0]#                    A         B         C         D# 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236# 2013-01-04  0.721555 -0.706771 -1.039575  0.271860
  • 使用布尔条件来选择数据
df[df > 0]#                    A         B         C         D# 2013-01-01  0.469112       NaN       NaN       NaN# 2013-01-02  1.212112       NaN  0.119209       NaN# 2013-01-03       NaN       NaN       NaN  1.071804# 2013-01-04  0.721555       NaN       NaN  0.271860# 2013-01-05       NaN  0.567020  0.276232       NaN# 2013-01-06       NaN  0.113648       NaN  0.524988
  • 使用isin()方法来过滤
df2 = df.copy()df2['E'] = ['one', 'one','two','three','four','three']#                    A         B         C         D      E# 2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one# 2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two# 2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three# 2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four# 2013-01-06 -0.673690  0.113648 -1.478427  0.524988  threedf2[df2['E'].isin(['two','four'])]#                    A         B         C         D     E# 2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two# 2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

设置-setting

  • 设置一个新的列
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))# 2013-01-02    1# 2013-01-03    2# 2013-01-04    3# 2013-01-05    4# 2013-01-06    5# 2013-01-07    6# Freq: D, dtype: int64df['F'] = s1
  • 通过标签设置新的值:
df.at[dates[0],'A'] = 0
  • 通过位置设置新的值
df.iat[0,1] = 0
  • 通过一个numpy数组设置一组新值
df.loc[:,'D'] = np.array([5] * len(df))

上诉操作之后的结果

                   A         B         C  D    F2013-01-01  0.000000  0.000000 -1.509059  5  NaN2013-01-02  1.212112 -0.173215  0.119209  5  1.02013-01-03 -0.861849 -2.104569 -0.494929  5  2.02013-01-04  0.721555 -0.706771 -1.039575  5  3.02013-01-05 -0.424972  0.567020  0.276232  5  4.02013-01-06 -0.673690  0.113648 -1.478427  5  5.0
  • 通过where操作来设置新的值
df2 = df.copy()df2[df2 > 0] = -df2#                    A         B         C  D    F# 2013-01-01  0.000000  0.000000 -1.509059 -5  NaN# 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0# 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0# 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0# 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0# 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。

  • reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])df1.loc[dates[0]:dates[1],'E'] = 1#                    A         B         C  D    F    E# 2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0# 2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0# 2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN# 2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN
  • 去掉包含缺失值的行
df1.dropna(how='any')#                    A         B         C  D    F    E# 2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
  • 对缺失值进行填充
df1.fillna(value=5)
  • 对数据进行布尔填充
pd.isnull(df1)#                 A      B      C      D      F      E# 2013-01-01  False  False  False  False   True  False# 2013-01-02  False  False  False  False  False  False# 2013-01-03  False  False  False  False  False   True# 2013-01-04  False  False  False  False  False   True

操作-Operations

详情 Basic Section On Binary Ops

统计

  • 执行描述性统计,所有轴。
df.mean()   # 均值
  • 在指定轴上进行相同的操作
df.mean(1)
  • 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)# Out[64]: # 2013-01-01    NaN# 2013-01-02    NaN# 2013-01-03    1.0# 2013-01-04    3.0# 2013-01-05    5.0# 2013-01-06    NaN# Freq: D, dtype: float64df.sub(s, axis='index')#                    A         B         C    D    F# 2013-01-01       NaN       NaN       NaN  NaN  NaN# 2013-01-02       NaN       NaN       NaN  NaN  NaN# 2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0# 2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0# 2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0# 2013-01-06       NaN       NaN       NaN  NaN  NaN

应用

  • 对数据应用函数
df.apply(np.cumsum) # 应用numpy的累计求和函数。#                    A         B         C   D     F# 2013-01-01  0.000000  0.000000 -1.509059   5   NaN# 2013-01-02  1.212112 -0.173215 -1.389850  10   1.0# 2013-01-03  0.350263 -2.277784 -1.884779  15   3.0# 2013-01-04  1.071818 -2.984555 -2.924354  20   6.0# 2013-01-05  0.646846 -2.417535 -2.648122  25  10.0# 2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0df.apply(lambda x: x.max() - x.min())# # A    2.073961# B    2.671590# C    1.785291# D    0.000000# F    4.000000# dtype: float64

直方图-Histogramming

具体参照:Histogramming and Discretization

s = pd.Series(np.random.randint(0, 7, size=10))# # 0    4# 1    2# 2    1# 3    2# 4    6# 5    4# 6    4# 7    6# 8    4# 9    4# dtype: int64s.value_counts()# 4    5# 6    2# 2    2# 1    1# dtype: int64

字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])s.str.lower()# # 0       a# 1       b# 2       c# 3    aaba# 4    baca# 5     NaN# 6    caba# 7     dog# 8     cat# dtype: object

合并-Merge

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

Concat

concat()方法:

df = pd.DataFrame(np.random.randn(10, 4))##           0         1         2         3# 0 -0.548702  1.467327 -1.015962 -0.483075# 1  1.637550 -1.217659 -0.291519 -1.745505# 2 -0.263952  0.991460 -0.919069  0.266046# 3 -0.709661  1.669052  1.037882 -1.705775# 4 -0.919854 -0.042379  1.247642 -0.009920# 5  0.290213  0.495767  0.362949  1.548106# 6 -1.131345 -0.089329  0.337863 -0.945867# 7 -0.932132  1.956030  0.017587 -0.016692# 8 -0.575247  0.254161 -1.143704  0.215897# 9  1.193555 -0.077118 -0.408530 -0.862495# break it into piecespieces = [df[:3], df[3:7], df[7:]]pd.concat(pieces)#           0         1         2         3# 0 -0.548702  1.467327 -1.015962 -0.483075# 1  1.637550 -1.217659 -0.291519 -1.745505# 2 -0.263952  0.991460 -0.919069  0.266046# 3 -0.709661  1.669052  1.037882 -1.705775# 4 -0.919854 -0.042379  1.247642 -0.009920# 5  0.290213  0.495767  0.362949  1.548106# 6 -1.131345 -0.089329  0.337863 -0.945867# 7 -0.932132  1.956030  0.017587 -0.016692# 8 -0.575247  0.254161 -1.143704  0.215897# 9  1.193555 -0.077118 -0.408530 -0.862495

join

Join 类似于SQL类型的合并,具体请参阅:Database style joining

left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})pd.merge(left, right, on='key')# Out[81]: #    key  lval  rval# 0  foo     1     4# 1  foo     1     5# 2  foo     2     4# 3  foo     2     5

Append

Append 将一行连接到一个DataFrame上,具体请参阅Appending

df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])s = df.iloc[3]df.append(s, ignore_index=True)

Grouping

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

  • (Splitting)按照一些规则将数据分为不同的组;

  • (Applying)对于每组数据分别执行一个函数;

  • (Combining)将结果组合到一个数据结构中;

df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',                           'foo', 'bar', 'foo', 'foo'],                    'B' : ['one', 'one', 'two', 'three',                           'two', 'two', 'one', 'three'],                    'C' : np.random.randn(8),                    'D' : np.random.randn(8)})
  • 分组并对每个分组执行sum函数
df.groupby('A').sum()#                   C         D# A   B                        # bar one   -1.814470  2.395985#     three -0.595447  0.166599#     two   -0.392670 -0.136473# foo one   -1.195665 -0.616981#     three  1.928123 -1.623033#     two    2.414034  1.600434

Reshaping

详情请参阅 Hierarchical IndexingReshaping

Stack

stack() 方法“压缩”DataFrame列.

tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',                      'foo', 'foo', 'qux', 'qux'],                     ['one', 'two', 'one', 'two',                      'one', 'two', 'one', 'two']]))index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])df2 = df[:4]#                      A         B# first second                    # bar   one     0.029399 -0.542108#       two     0.282696 -0.087302# baz   one    -1.575170  1.771208#       two     0.816482  1.100230stacked = df2.stack()# first  second   # bar    one     A    0.029399#                B   -0.542108#        two     A    0.282696#                B   -0.087302# baz    one     A   -1.575170#                B    1.771208#        two     A    0.816482#                B    1.100230# dtype: float64

stack()unstack()相互为反函数。

stacked.unstack()#                      A         B# first second                    # bar   one     0.029399 -0.542108#       two     0.282696 -0.087302# baz   one    -1.575170  1.771208#       two     0.816482  1.100230stacked.unstack(1)# second        one       two# first                      # bar   A  0.029399  0.282696#       B -0.542108 -0.087302# baz   A -1.575170  0.816482#       B  1.771208  1.100230stacked.unstack(0)# first          bar       baz# second                      # one    A  0.029399 -1.575170#        B -0.542108  1.771208# two    A  0.282696  0.816482#        B -0.087302  1.100230

数据透视表-Pivot Tables

详情请参阅:Pivot Tables.

df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,                   'B' : ['A', 'B', 'C'] * 4,                   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,                   'D' : np.random.randn(12),                   'E' : np.random.randn(12)})# #         A  B    C         D         E# 0     one  A  foo  1.418757 -0.179666# 1     one  B  foo -1.879024  1.291836# 2     two  C  foo  0.536826 -0.009614# 3   three  A  bar  1.006160  0.392149# 4     one  B  bar -0.029716  0.264599# 5     one  C  bar -1.146178 -0.057409# 6     two  A  foo  0.100900 -1.425638# 7   three  B  foo -1.035018  1.024098# 8     one  C  foo  0.314665 -0.106062# 9     one  A  bar -0.773723  1.824375# 10    two  B  bar -1.170653  0.595974# 11  three  C  bar  0.648740  1.167115

生成数据透视表

pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])# Out[107]: # C             bar       foo# A     B                    # one   A -0.773723  1.418757#       B -0.029716 -1.879024#       C -1.146178  0.314665# three A  1.006160       NaN#       B       NaN -1.035018#       C  0.648740       NaN# two   A       NaN  0.100900#       B -1.170653       NaN#       C       NaN  0.536826

时间序列-Time Series

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

rng = pd.date_range('1/1/2012', periods=100, freq='S')ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)ts.resample('5Min').sum()# 2012-01-01    25083# Freq: 5T, dtype: int64
  • 时区表示
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')ts = pd.Series(np.random.randn(len(rng)), rng)# 2012-03-06    0.464000# 2012-03-07    0.227371# 2012-03-08   -0.496922# 2012-03-09    0.306389# 2012-03-10   -2.290613# Freq: D, dtype: float64ts_utc = ts.tz_localize('UTC')# 2012-03-06 00:00:00+00:00    0.464000# 2012-03-07 00:00:00+00:00    0.227371# 2012-03-08 00:00:00+00:00   -0.496922# 2012-03-09 00:00:00+00:00    0.306389# 2012-03-10 00:00:00+00:00   -2.290613# Freq: D, dtype: float64
  • 时区转换
ts_utc.tz_convert('US/Eastern')# Out[116]: # 2012-03-05 19:00:00-05:00    0.464000# 2012-03-06 19:00:00-05:00    0.227371# 2012-03-07 19:00:00-05:00   -0.496922# 2012-03-08 19:00:00-05:00    0.306389# 2012-03-09 19:00:00-05:00   -2.290613# Freq: D, dtype: float64
  • 时间跨度转换
rng = pd.date_range('1/1/2012', periods=5, freq='M')ts = pd.Series(np.random.randn(len(rng)), index=rng)# 2012-01-31   -1.134623# 2012-02-29   -1.561819# 2012-03-31   -0.260838# 2012-04-30    0.281957# 2012-05-31    1.523962# Freq: M, dtype: float64ps = ts.to_period()# 2012-01   -1.134623# 2012-02   -1.561819# 2012-03   -0.260838# 2012-04    0.281957# 2012-05    1.523962# Freq: M, dtype: float64ps.to_timestamp()# # 2012-01-01   -1.134623# 2012-02-01   -1.561819# 2012-03-01   -0.260838# 2012-04-01    0.281957# 2012-05-01    1.523962# Freq: MS, dtype: float64
  • 时期和时间戳之间的转换使得可以使用一些方便的算术函数。
prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')ts = pd.Series(np.random.randn(len(prng)), prng)ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9ts.head()# 1990-03-01 09:00   -0.902937# 1990-06-01 09:00    0.068159# 1990-09-01 09:00   -0.057873# 1990-12-01 09:00   -0.368204# 1991-03-01 09:00   -1.144073# Freq: H, dtype: float64

Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
  • 将原始的grade转换为Categorical数据类型
df["grade"] = df["raw_grade"].astype("category")# Out[129]: # 0    a# 1    b# 2    b# 3    a# 4    a# 5    e# Name: grade, dtype: category# Categories (3, object): [a, b, e]
  • 将Categorical类型数据重命名为更有意义的名称
df["grade"].cat.categories = ["very good", "good", "very bad"]  # [a, b, e]
  • 对类别进行重新排序,增加缺失的类别
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])# # 0    very good# 1         good# 2         good# 3    very good# 4    very good# 5     very bad# Name: grade, dtype: category# Categories (5, object): [very bad, bad, medium, good, very good]
  • 排序是按照Categorical的顺序进行的而不是按照字典顺序进行
df.sort_values(by="grade")# Out[133]: #    id raw_grade      grade# 5   6         e   very bad# 1   2         b       good# 2   3         b       good# 0   1         a  very good# 3   4         a  very good# 4   5         a  very good
  • 对Categorical列进行排序时存在空的类别
df.groupby("grade").size()# Out[134]: # grade# very bad     1# bad          0# medium       0# good         2# very good    3# dtype: int64

画图-Plotting

具体文档参看:Plotting docs

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))ts = ts.cumsum()ts.plot()plt.show()

_images/series_plot_basic.png

  • 对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,                  columns=['A', 'B', 'C', 'D'])df = df.cumsum()plt.figure(); df.plot(); plt.legend(loc='best')

_images/frame_plot_basic.png

导入和保存数据

csv

参考:Writing to a csv file

  • 写入csv
df.to_csv('foo.csv')
  • 读取csv
pd.read_csv('foo.csv')

HDF5

参考:HDFStores

  • 写入HDF5存储
df.to_hdf('foo.h5','df')
  • 从HDF5存储中读取
pd.read_hdf('foo.h5','df')

Excel

参考: MS Excel

  • 写入excel
df.to_excel('foo.xlsx', sheet_name='Sheet1')
  • 读取excel
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

Gotchas

if pd.Series([False, True, False]):    print("I was true")

See Comparisons for an explanation and what to do.

See Gotchas as well.

Reference

  1. 10 Minutes to pandas
  2. Pandas分组统计函数:groupby、pivot_table及crosstab
原创粉丝点击