[TensorFlow]入门学习笔记(5)-循环神经网络RNN

来源:互联网 发布:centos7 开启3306端口 编辑:程序博客网 时间:2024/05/29 02:17

前言

关于循环神经网络的理论推导和证明,推荐去看论文。参考资料。

  • https://colah.github.io/posts/2015-08-Understanding-LSTMs/
  • https://r2rt.com/styles-of-truncated-backpropagation.html

    本章主要写循环神经网络RNN.基本的RNN,双向LSTM,动态LSTM。
    训练集用MNIST,用作分类问题。主要练习RNN搭建。

Simple RNN

  • 输入为[batch_size,n_step,n_input].
  • reshape为[n_step,[batch,n_input]]
  • 网络架构h_t输出的维度为512
  • 网络经过CELL输出为(?,512)
  • 然后进行wx+b
  • softmax 的交叉熵 ,就是output 在softmax之后求loss
# -*- coding: UTF-8 -*import tensorflow as tffrom tensorflow.contrib import rnnimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_data#加载数据mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)learning_rate = 0.001training_iters = 100000batch_size = 128display_step = 10n_input = 28n_steps = 28n_hidden = 512 #h_t输出的维度n_clssses = 10#tf graph inputx = tf.placeholder(tf.float32,[None,n_steps,n_input])y = tf.placeholder(tf.float32,[None,n_clssses])#创建w和bW = {    'out':tf.Variable(tf.random_normal([n_hidden,n_clssses]))}b = {    'out':tf.Variable(tf.random_normal([n_clssses]))}def RNN(x,W,b):    x = tf.unstack(x,n_steps,1)    #forget_bias 为设置遗忘门的参数    lstm_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0)    #     #static_rnn(    #     cell,    #     inputs,    #     initial_state=None,    #     dtype=None,    #     sequence_length=None,    #     scope=None    # )    #cell: An instance of RNNCell.    #inputs: A length T list of inputs, each a Tensor of shape [batch_size, input_size], or a nested tuple of such elements.    outputs,states = rnn.static_rnn(lstm_cell,x,dtype=tf.float32)    return tf.matmul(outputs[-1],W['out']) + b['out']pred = RNN(x,W,b)cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=pred))optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)#评估模型correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))init = tf.global_variables_initializer()with tf.Session() as sess:    sess.run(init)    step = 1    while step * batch_size < training_iters:        batch_x,batch_y = mnist.train.next_batch(batch_size)        batch_x = batch_x.reshape((batch_size,n_steps,n_input))        sess.run(optimizer,feed_dict={x:batch_x,y:batch_y})        if step % display_step == 0:            acc = sess.run(accuracy,feed_dict={x:batch_x,y:batch_y})            loss = sess.run(cost,feed_dict={x:batch_x,y:batch_y})            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \                  "{:.6f}".format(loss) + ", Training Accuracy= " + \                  "{:.5f}".format(acc)        step+=1    print "Optimization Finished!"    # Calculate accuracy for 128 mnist test images    test_len = 128    test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))    test_label = mnist.test.labels[:test_len]    print "Testing Accuracy:", \        sess.run(accuracy, feed_dict={x: test_data, y: test_label})

双向LSTM bidirectional rnn

基本架构与simple是一样的。不同的在于。

  • cell 分为fw,bw前向和后向的cell
  • 两个cell的参数相加为h_t输出维度
  • W的维度为前后向cell相加的维度
# -*- coding: UTF-8 -*import tensorflow as tffrom tensorflow.contrib import rnnimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/",one_hot=True)#parameterslearning_rate = 0.001training_iter = 100000batch_size = 128display_step = 10#network parametersn_input = 28n_steps = 28n_hidden = 512n_classes = 10#定义占位符x = tf.placeholder(tf.float32,[None,n_steps,n_input])y = tf.placeholder(tf.float32,[None,n_classes])#定义权重和偏置weights = {    # Hidden layer weights => 2*n_hidden because of foward + backward cells    'out':tf.Variable(tf.random_normal([2*n_hidden,n_classes]))}biases = {    'out':tf.Variable(tf.random_normal([n_classes]))}def BiRNN(x,weights,biases):    x = tf.unstack(x,n_steps,1)    lstm_fw_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0)    lstm_bw_cell = rnn.BasicLSTMCell(n_hidden,forget_bias=1.0)    output,_,_ = rnn.static_bidirectional_rnn(lstm_fw_cell,lstm_bw_cell,x,dtype=tf.float32)    return tf.matmul(output[-1],weights['out'])+biases['out']pred = BiRNN(x,weights,biases)cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=pred))optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)#评估模型correct_pred = tf.equal(tf.argmax(y,1),tf.argmax(pred,1))accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))init = tf.global_variables_initializer()with tf.Session() as sess:    sess.run(init)    step = 1    while step*batch_size < training_iter:        batch_x,batch_y = mnist.train.next_batch(batch_size)        #reshape        batch_x = batch_x.reshape((batch_size,n_steps,n_input))        sess.run(optimizer,feed_dict={            x:batch_x,            y:batch_y        })        if step % display_step == 0:            acc = accuracy.eval(feed_dict={x:batch_x,y:batch_y})            loss = cost.eval(feed_dict={x:batch_x,y:batch_y})            print "Iter " + str(step * batch_size) + ", Minibatch Loss= " + \                  "{:.6f}".format(loss) + ", Training Accuracy= " + \                  "{:.5f}".format(acc)        step+=1    print "Optimization Finished!"    test_len = 128    test_X = mnist.test.images[:test_len].reshape((-1,n_steps,n_input))    test_y = mnist.test.labels[:test_len]    print "Testing Accuracy:",\            sess.run(accuracy,feed_dict={x:test_X,y:test_y})

dynamic rnn

from __future__ import print_functionimport tensorflow as tfimport random# ====================#  TOY DATA GENERATOR# ====================class ToySequenceData(object):    """ Generate sequence of data with dynamic length.    This class generate samples for training:    - Class 0: linear sequences (i.e. [0, 1, 2, 3,...])    - Class 1: random sequences (i.e. [1, 3, 10, 7,...])    NOTICE:    We have to pad each sequence to reach 'max_seq_len' for TensorFlow    consistency (we cannot feed a numpy array with inconsistent    dimensions). The dynamic calculation will then be perform thanks to    'seqlen' attribute that records every actual sequence length.    """    def __init__(self, n_samples=1000, max_seq_len=20, min_seq_len=3,                 max_value=1000):        self.data = []        self.labels = []        self.seqlen = []        for i in range(n_samples):            # Random sequence length            len = random.randint(min_seq_len, max_seq_len)            # Monitor sequence length for TensorFlow dynamic calculation            self.seqlen.append(len)            # Add a random or linear int sequence (50% prob)            if random.random() < .5:                # Generate a linear sequence                rand_start = random.randint(0, max_value - len)                s = [[float(i) / max_value] for i in                     range(rand_start, rand_start + len)]                # Pad sequence for dimension consistency                s += [[0.] for i in range(max_seq_len - len)]                self.data.append(s)                self.labels.append([1., 0.])            else:                # Generate a random sequence                s = [[float(random.randint(0, max_value)) / max_value]                     for i in range(len)]                # Pad sequence for dimension consistency                s += [[0.] for i in range(max_seq_len - len)]                self.data.append(s)                self.labels.append([0., 1.])        self.batch_id = 0    def next(self, batch_size):        """ Return a batch of data. When dataset end is reached, start over.        """        if self.batch_id == len(self.data):            self.batch_id = 0        batch_data = (self.data[self.batch_id:min(self.batch_id +                                                  batch_size, len(self.data))])        batch_labels = (self.labels[self.batch_id:min(self.batch_id +                                                      batch_size, len(self.data))])        batch_seqlen = (self.seqlen[self.batch_id:min(self.batch_id +                                                      batch_size, len(self.data))])        self.batch_id = min(self.batch_id + batch_size, len(self.data))        return batch_data, batch_labels, batch_seqlen# ==========#   MODEL# ==========# Parameterslearning_rate = 0.01training_iters = 1000000batch_size = 128display_step = 10# Network Parametersseq_max_len = 20  # Sequence max lengthn_hidden = 64  # hidden layer num of featuresn_classes = 2  # linear sequence or nottrainset = ToySequenceData(n_samples=1000, max_seq_len=seq_max_len)testset = ToySequenceData(n_samples=500, max_seq_len=seq_max_len)# tf Graph inputx = tf.placeholder("float", [None, seq_max_len, 1])y = tf.placeholder("float", [None, n_classes])# A placeholder for indicating each sequence lengthseqlen = tf.placeholder(tf.int32, [None])# Define weightsweights = {    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))}biases = {    'out': tf.Variable(tf.random_normal([n_classes]))}def dynamicRNN(x, seqlen, weights, biases):    # Prepare data shape to match `rnn` function requirements    # Current data input shape: (batch_size, n_steps, n_input)    # Required shape: 'n_steps' tensors list of shape (batch_size, n_input)    # Unstack to get a list of 'n_steps' tensors of shape (batch_size, n_input)    x = tf.unstack(x, seq_max_len, 1)    # Define a lstm cell with tensorflow    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden)    # Get lstm cell output, providing 'sequence_length' will perform dynamic    # calculation.    outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32,                                                sequence_length=seqlen)    # When performing dynamic calculation, we must retrieve the last    # dynamically computed output, i.e., if a sequence length is 10, we need    # to retrieve the 10th output.    # However TensorFlow doesn't support advanced indexing yet, so we build    # a custom op that for each sample in batch size, get its length and    # get the corresponding relevant output.    # 'outputs' is a list of output at every timestep, we pack them in a Tensor    # and change back dimension to [batch_size, n_step, n_input]    # 'x' is [1, 4]    # 'y' is [2, 5]    # 'z' is [3, 6]    #stack([x, y, z]) = > [[1, 4], [2, 5], [3, 6]]  # Pack along first dim.    #stack([x, y, z], axis=1) = > [[1, 2, 3], [4, 5, 6]]    outputs = tf.stack(outputs)  #[n_step,batch_size,n_output]    outputs = tf.transpose(outputs, [1, 0, 2]) #[batch_size,n_steps,n_output]    # Hack to build the indexing and retrieve the right output.    batch_size = tf.shape(outputs)[0]    # Start indices for each sample    index = tf.range(0, batch_size) * seq_max_len + (seqlen - 1)    # Indexing    outputs = tf.gather(tf.reshape(outputs, [-1, n_hidden]), index)    print (outputs.shape)    exit()    # Linear activation, using outputs computed above    return tf.matmul(outputs, weights['out']) + biases['out']pred = dynamicRNN(x, seqlen, weights, biases)# Define loss and optimizercost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)# Evaluate modelcorrect_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))# Initializing the variablesinit = tf.global_variables_initializer()# Launch the graphwith tf.Session() as sess:    sess.run(init)    step = 1    # Keep training until reach max iterations    while step * batch_size < training_iters:        batch_x, batch_y, batch_seqlen = trainset.next(batch_size)        # Run optimization op (backprop)        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,                                       seqlen: batch_seqlen})        if step % display_step == 0:            # Calculate batch accuracy            acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y,                                                seqlen: batch_seqlen})            # Calculate batch loss            loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y,                                             seqlen: batch_seqlen})            print("Iter " + str(step * batch_size) + ", Minibatch Loss= " + \                  "{:.6f}".format(loss) + ", Training Accuracy= " + \                  "{:.5f}".format(acc))        step += 1    print("Optimization Finished!")    # Calculate accuracy    test_data = testset.data    test_label = testset.labels    test_seqlen = testset.seqlen    print("Testing Accuracy:", \          sess.run(accuracy, feed_dict={x: test_data, y: test_label,                                        seqlen: test_seqlen}))
原创粉丝点击