Android 多线程

来源:互联网 发布:js 对象作为参数 编辑:程序博客网 时间:2024/05/18 02:46

Android之多线程常用用法总结

方法一:(java习惯,在android平台开发时这样是不行的,因为它违背了单线程模型)

刚刚开始接触android线程编程的时候,习惯好像java一样,试图用下面的代码解决问题

new Thread( new Runnable() {         public void run() {              myView.invalidate();         }            }).start();

可以实现功能,刷新UI界面。但是这样是不行的,因为它违背了单线程模型:Android UI操作并不是线程安全的并且这些操作必须在UI线程中执行。

方法二:(Thread+Handler)

查阅了文档和apidemo后,发觉常用的方法是利用Handler来实现UI线程的更新的。

异步消息处理机制

  • 创建Handler对象,重写handleMessage方法
  • 当子线程需要更新UI时,Handler对象调用sendMessage方法,发送Message消息
  • Message消息会添加到当前线程的消息队列MessageQueue中等待被处理
  • 当前线程的Looper(MessageQueue管家)会一直尝试从MessageQueue中去取待处理的消息,最后分发回Handler的handleMessage()方法中

不管是runOnUiThread(),还是AsyncTask都是这个机制只是做了很好的封装

Handler来根据接收的消息,处理UI更新。Thread线程发出Handler消息,通知更新UI。

Handler myHandler = new Handler() {            public void handleMessage(Message msg) {                  switch (msg.what) {                       case TestHandler.GUIUPDATEIDENTIFIER:                            myBounceView.invalidate();                           break;                  }                  super.handleMessage(msg);             }        };  
class myThread implements Runnable {             public void run() {                 while (!Thread.currentThread().isInterrupted()) {                        Message message = new Message();                       message.what = TestHandler.GUIUPDATEIDENTIFIER;                       TestHandler.this.myHandler.sendMessage(message);                       try {                            Thread.sleep(100);                        } catch (InterruptedException e) {                            Thread.currentThread().interrupt();                       }                  }             }        }   

下面是一个小demo

public class MainActivity extends AppCompatActivity implements View.OnClickListener {    public static final int UPDATE_TEXT = 11;    private TextView textView;    @Override    protected void onCreate(Bundle savedInstanceState) {        super.onCreate(savedInstanceState);        setContentView(R.layout.activity_main);        ((Button)findViewById(R.id.button_test1)).setOnClickListener(this);        ((Button)findViewById(R.id.button_test2)).setOnClickListener(this);        textView = (TextView)findViewById(R.id.textview_text);    }    private Handler myHandler = new Handler(){        @Override        public void handleMessage(Message msg) {            super.handleMessage(msg);            switch (msg.what){                case UPDATE_TEXT:                    textView.setText("Hello world");                    break;                default:                    break;            }        }        @Override        public void dispatchMessage(Message msg) {            super.dispatchMessage(msg);        }        @Override        public String getMessageName(Message message) {            return super.getMessageName(message);        }        @Override        public boolean sendMessageAtTime(Message msg, long uptimeMillis) {            return super.sendMessageAtTime(msg, uptimeMillis);        }    };    @Override    public void onClick(View view) {        switch (view.getId()){            case R.id.button_test1:                sendMessage();                break;            case R.id.button_test2:                break;            default:                break;        }    }    private void sendMessage(){        new Thread(new Runnable() {            @Override            public void run() {                Message message = new Message();                message.what = UPDATE_TEXT;                myHandler.sendMessage(message);            }        }).start();    }}
  1. 对于线程中的刷新一个View为基类的界面,可以使用postInvalidate()方法在线程中来处理,其中还提供了一些重写方法比如postInvalidate(int left,int top,int right,int bottom) 来刷新一个矩形区域,以及延时执行,比如postInvalidateDelayed(long delayMilliseconds)或postInvalidateDelayed(long delayMilliseconds,int left,int top,int right,int bottom) 方法,其中第一个参数为毫秒

  2. 当然推荐的方法是通过一个Handler来处理这些,可以在一个线程的run方法中调用handler对象的 postMessage或sendMessage方法来实现,Android程序内部维护着一个消息队列,会轮训处理这些,如果你是Win32程序员可以很好理解这些消息处理,不过相对于Android来说没有提供 PreTranslateMessage这些干涉内部的方法。

  3. Looper又是什么呢? ,其实Android中每一个Thread都跟着一个Looper,Looper可以帮助Thread维护一个消息队列,但是Looper和Handler没有什么关系,我们从开源的代码可以看到Android还提供了一个Thread继承类HanderThread可以帮助我们处理,在HandlerThread对象中可以通过getLooper方法获取一个Looper对象控制句柄,我们可以将其这个Looper对象映射到一个Handler中去来实现一个线程同步机制,Looper对象的执行需要初始化Looper.prepare方法就是昨天我们看到的问题,同时推出时还要释放资源,使用Looper.release方法。
  4. Message 在Android是什么呢? 对于Android中Handler可以传递一些内容,通过Bundle对象可以封装String、Integer以及Blob二进制对象,我们通过在线程中使用Handler对象的sendEmptyMessage或sendMessage方法来传递一个Bundle对象到Handler处理器。对于Handler类提供了重写方法handleMessage(Message msg) 来判断,通过msg.what来区分每条信息。将Bundle解包来实现Handler类更新UI线程中的内容实现控件的刷新操作。相关的Handler对象有关消息发送sendXXXX相关方法如下,同时还有postXXXX相关方法,这些和Win32中的道理基本一致,一个为发送后直接返回,一个为处理后才返回 .
  5. 在Android中还提供了一种有别于线程的处理方式,就是Task以及AsyncTask,从开源代码中可以看到是针对Concurrent的封装,开发人员可以方便的处理这些异步任务

方法三:(java习惯。Android平台中,这样做是不行的,这跟Android的线程安全有关)

在Android平台中需要反复按周期执行方法可以使用Java上自带的TimerTask类,TimerTask相对于Thread来说对于资源消耗的更低,除了使用Android自带的AlarmManager使用Timer定时器是一种更好的解决方法。 我们需要引入import java.util.Timer; 和 import java.util.TimerTask;

public class JavaTimer extends Activity {      Timer timer = new Timer();      TimerTask task = new TimerTask(){           public void run() {              setTitle("hear me?");          }                };      public void onCreate(Bundle savedInstanceState) {          super.onCreate(savedInstanceState);          setContentView(R.layout.main);           timer.schedule(task, 10000);      }  }

方法四:(TimerTask + Handler)

通过配合Handler来实现timer功能的!

public class TestTimer extends Activity {      Timer timer = new Timer();      Handler handler = new Handler(){           public void handleMessage(Message msg) {              switch (msg.what) {                  case 1:                      setTitle("hear me?");                  break;                  }                  super.handleMessage(msg);          }      };      TimerTask task = new TimerTask(){            public void run() {              Message message = new Message();                  message.what = 1;                  handler.sendMessage(message);            }                };      public void onCreate(Bundle savedInstanceState) {          super.onCreate(savedInstanceState);          setContentView(R.layout.main);          timer.schedule(task, 10000);      }  }  

方法五:( Runnable + Handler.postDelayed(runnable,time) )

在Android里定时更新 UI,通常使用的是 java.util.Timer, java.util.TimerTask, android.os.Handler组合。实际上Handler 自身已经提供了定时的功能。

 private Handler handler = new Handler();      private Runnable myRunnable= new Runnable() {            public void run() {              if (run) {                  handler.postDelayed(this, 1000);                  count++;              }              tvCounter.setText("Count: " + count);          }      }; 

然后在其他地方调用

handler.post(myRunnable);handler.post(myRunnable,time);

方法六:AsyncTask的使用

/** AsyncTask是一个抽象类,所以如果使用必须使用子类继承它* AsyncTask<param1,param2,param3> 3个泛型参数* param1:执行AsyncTask时参数,可在后台任务使用,这里传入Void* param2:后台执行任务进度的泛型进度单位,这里传入Integer类型* param3:执行完毕返回的泛型结果,这里传入Boolean类型* */public class DownloadTask extends AsyncTask<Void,Integer,Boolean>{    /*    * */    @Override    protected void onPreExecute() {        super.onPreExecute();        /*        任务开始之前调用,用于界面初始化操作    * */    }    @Override    protected Boolean doInBackground(Void... voids) {        return null;         /*         这个方法代码都在子线程执行,处理所有耗时操作,当然不可以进行更新UI操作         如果想更新UI调用publishProgress();然后onProgressUpdate()很快被调用,在里面写更新UI操作    * */    }    @Override    protected void onProgressUpdate(Integer... values) {        super.onProgressUpdate(values);         /*         如果想更新UI调用publishProgress();然后onProgressUpdate()很快被调用,在里面写更新UI操作         该方法的参数就是后台任务调用publishProgress();传过来的    * */    }    @Override    protected void onPostExecute(Boolean aBoolean) {        super.onPostExecute(aBoolean);         /*        当doInBackground执行完毕并通过return返回结果aBoolean,        做一些善后工作,比如提醒任务执行结果,关闭进度条    * */    }    @Override    protected void onCancelled(Boolean aBoolean) {        super.onCancelled(aBoolean);    }    @Override    protected void onCancelled() {        super.onCancelled();    }}

关于Handler详情分析
开始进入正题,我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃。相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创建一个Message对象,然后借助Handler发送出去,之后在Handler的handleMessage()方法中获得刚才发送的Message对象,然后在这里进行UI操作就不会再出现崩溃了。

这种处理方式被称为异步消息处理线程,虽然我相信大家都会用,可是你知道它背后的原理是什么样的吗?今天我们就来一起深入探究一下Handler和Message背后的秘密。
首先来看一下如何创建Handler对象。你可能会觉得挺纳闷的,创建Handler有什么好看的呢,直接new一下不就行了?确实,不过即使只是简单new一下,还是有不少地方需要注意的,我们尝试在程序中创建两个Handler对象,一个在主线程中创建,一个在子线程中创建,代码如下所示:

public class MainActivity extends Activity {    private Handler handler1;    private Handler handler2;    @Override    protected void onCreate(Bundle savedInstanceState) {        super.onCreate(savedInstanceState);        setContentView(R.layout.activity_main);        handler1 = new Handler();        new Thread(new Runnable() {            @Override            public void run() {                handler2 = new Handler();            }        }).start();    }}

如果现在运行一下程序,你会发现,在子线程中创建的Handler是会导致程序崩溃的,提示的错误信息为 Can’t create handler inside thread that has not called Looper.prepare() 。说是不能在没有调用Looper.prepare() 的线程中创建Handler,那我们尝试在子线程中先调用一下Looper.prepare()呢,代码如下所示:

new Thread(new Runnable() {    @Override    public void run() {        Looper.prepare();        handler2 = new Handler();    }}).start(); 

果然这样就不会崩溃了,不过只满足于此显然是不够的,我们来看下Handler的源码,搞清楚为什么不调用Looper.prepare()就不行呢。Handler的无参构造函数如下所示:

public Handler() {    if (FIND_POTENTIAL_LEAKS) {        final Class<? extends Handler> klass = getClass();        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&                (klass.getModifiers() & Modifier.STATIC) == 0) {            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +                klass.getCanonicalName());        }    }    mLooper = Looper.myLooper();    if (mLooper == null) {        throw new RuntimeException(            "Can't create handler inside thread that has not called Looper.prepare()");    }    mQueue = mLooper.mQueue;    mCallback = null;} 

可以看到,在第10行调用了Looper.myLooper()方法获取了一个Looper对象,如果Looper对象为空,则会抛出一个运行时异常,提示的错误正是 Can’t create handler inside thread that has not called Looper.prepare()!那什么时候Looper对象才可能为空呢?这就要看看Looper.myLooper()中的代码了,如下所示:

public static final Looper myLooper() {    return (Looper)sThreadLocal.get();} 

这个方法非常简单,就是从sThreadLocal对象中取出Looper。如果sThreadLocal中有Looper存在就返回Looper,如果没有Looper存在自然就返回空了。因此你可以想象得到是在哪里给sThreadLocal设置Looper了吧,当然是Looper.prepare()方法!我们来看下它的源码:

public static final void prepare() {    if (sThreadLocal.get() != null) {        throw new RuntimeException("Only one Looper may be created per thread");    }    sThreadLocal.set(new Looper());}

可以看到,首先判断sThreadLocal中是否已经存在Looper了,如果还没有则创建一个新的Looper设置进去。这样也就完全解释了为什么我们要先调用Looper.prepare()方法,才能创建Handler对象。同时也可以看出每个线程中最多只会有一个Looper对象。

咦?不对呀!主线程中的Handler也没有调用Looper.prepare()方法,为什么就没有崩溃呢?细心的朋友我相信都已经发现了这一点,这是由于在程序启动的时候,系统已经帮我们自动调用了Looper.prepare()方法。查看ActivityThread中的main()方法,代码如下所示:

public static void main(String[] args) {    SamplingProfilerIntegration.start();    CloseGuard.setEnabled(false);    Environment.initForCurrentUser();    EventLogger.setReporter(new EventLoggingReporter());    Process.setArgV0("<pre-initialized>");    Looper.prepareMainLooper();    ActivityThread thread = new ActivityThread();    thread.attach(false);    if (sMainThreadHandler == null) {        sMainThreadHandler = thread.getHandler();    }    AsyncTask.init();    if (false) {        Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread"));    }    Looper.loop();    throw new RuntimeException("Main thread loop unexpectedly exited");} 

可以看到,在第7行调用了Looper.prepareMainLooper()方法,而这个方法又会再去调用Looper.prepare()方法,代码如下所示:

public static final void prepareMainLooper() {    prepare();    setMainLooper(myLooper());    if (Process.supportsProcesses()) {        myLooper().mQueue.mQuitAllowed = false;    }}

因此我们应用程序的主线程中会始终存在一个Looper对象,从而不需要再手动去调用Looper.prepare()方法了。

这样基本就将Handler的创建过程完全搞明白了,总结一下就是在主线程中可以直接创建Handler对象,而在子线程中需要先调用Looper.prepare()才能创建Handler对象。

看完了如何创建Handler之后,接下来我们看一下如何发送消息,这个流程相信大家也已经非常熟悉了,new出一个Message对象,然后可以使用setData()方法或arg参数等方式为消息携带一些数据,再借助Handler将消息发送出去就可以了,示例代码如下:

new Thread(new Runnable() {    @Override    public void run() {        Message message = new Message();        message.arg1 = 1;        Bundle bundle = new Bundle();        bundle.putString("data", "data");        message.setData(bundle);        handler.sendMessage(message);    }}).start();

可是这里Handler到底是把Message发送到哪里去了呢?为什么之后又可以在Handler的handleMessage()方法中重新得到这条Message呢?看来又需要通过阅读源码才能解除我们心中的疑惑了,Handler中提供了很多个发送消息的方法,其中除了sendMessageAtFrontOfQueue()方法之外,其它的发送消息方法最终都会辗转调用到sendMessageAtTime()方法中,这个方法的源码如下所示:

public boolean sendMessageAtTime(Message msg, long uptimeMillis){    boolean sent = false;    MessageQueue queue = mQueue;    if (queue != null) {        msg.target = this;        sent = queue.enqueueMessage(msg, uptimeMillis);    }    else {        RuntimeException e = new RuntimeException(            this + " sendMessageAtTime() called with no mQueue");        Log.w("Looper", e.getMessage(), e);    }    return sent;} 

sendMessageAtTime()方法接收两个参数,其中msg参数就是我们发送的Message对象,而uptimeMillis参数则表示发送消息的时间,它的值等于自系统开机到当前时间的毫秒数再加上延迟时间,如果你调用的不是sendMessageDelayed()方法,延迟时间就为0,然后将这两个参数都传递到MessageQueue的enqueueMessage()方法中。这个MessageQueue又是什么东西呢?其实从名字上就可以看出了,它是一个消息队列,用于将所有收到的消息以队列的形式进行排列,并提供入队和出队的方法。这个类是在Looper的构造函数中创建的,因此一个Looper也就对应了一个MessageQueue。
那么enqueueMessage()方法毫无疑问就是入队的方法了,我们来看下这个方法的源码:

final boolean enqueueMessage(Message msg, long when) {    if (msg.when != 0) {        throw new AndroidRuntimeException(msg + " This message is already in use.");    }    if (msg.target == null && !mQuitAllowed) {        throw new RuntimeException("Main thread not allowed to quit");    }    synchronized (this) {        if (mQuiting) {            RuntimeException e = new RuntimeException(msg.target + " sending message to a Handler on a dead thread");            Log.w("MessageQueue", e.getMessage(), e);            return false;        } else if (msg.target == null) {            mQuiting = true;        }        msg.when = when;        Message p = mMessages;        if (p == null || when == 0 || when < p.when) {            msg.next = p;            mMessages = msg;            this.notify();        } else {            Message prev = null;            while (p != null && p.when <= when) {                prev = p;                p = p.next;            }            msg.next = prev.next;            prev.next = msg;            this.notify();        }    }    return true;} 

首先你要知道,MessageQueue并没有使用一个集合把所有的消息都保存起来,它只使用了一个mMessages对象表示当前待处理的消息。然后观察上面的代码的16~31行我们就可以看出,所谓的入队其实就是将所有的消息按时间来进行排序,这个时间当然就是我们刚才介绍的uptimeMillis参数。具体的操作方法就根据时间的顺序调用msg.next,从而为每一个消息指定它的下一个消息是什么。当然如果你是通过sendMessageAtFrontOfQueue()方法来发送消息的,它也会调用enqueueMessage()来让消息入队,只不过时间为0,这时会把mMessages赋值为新入队的这条消息,然后将这条消息的next指定为刚才的mMessages,这样也就完成了添加消息到队列头部的操作。
现在入队操作我们就已经看明白了,那出队操作是在哪里进行的呢?这个就需要看一看Looper.loop()方法的源码了,如下所示:

public static final void loop() {    Looper me = myLooper();    MessageQueue queue = me.mQueue;    while (true) {        Message msg = queue.next(); // might block        if (msg != null) {            if (msg.target == null) {                return;            }            if (me.mLogging!= null) me.mLogging.println(                    ">>>>> Dispatching to " + msg.target + " "                    + msg.callback + ": " + msg.what                    );            msg.target.dispatchMessage(msg);            if (me.mLogging!= null) me.mLogging.println(                    "<<<<< Finished to    " + msg.target + " "                    + msg.callback);            msg.recycle();        }    }} 

可以看到,这个方法从第4行开始,进入了一个死循环,然后不断地调用的MessageQueue的next()方法,我想你已经猜到了,这个next()方法就是消息队列的出队方法。不过由于这个方法的代码稍微有点长,我就不贴出来了,它的简单逻辑就是如果当前MessageQueue中存在mMessages(即待处理消息),就将这个消息出队,然后让下一条消息成为mMessages,否则就进入一个阻塞状态,一直等到有新的消息入队。继续看loop()方法的第14行,每当有一个消息出队,就将它传递到msg.target的dispatchMessage()方法中,那这里msg.target又是什么呢?其实就是Handler啦,你观察一下上面sendMessageAtTime()方法的第6行就可以看出来了。接下来当然就要看一看Handler中dispatchMessage()方法的源码了,如下所示:

public void dispatchMessage(Message msg) {    if (msg.callback != null) {        handleCallback(msg);    } else {        if (mCallback != null) {            if (mCallback.handleMessage(msg)) {                return;            }        }        handleMessage(msg);    }} 

在第5行进行判断,如果mCallback不为空,则调用mCallback的handleMessage()方法,否则直接调用Handler的handleMessage()方法,并将消息对象作为参数传递过去。这样我相信大家就都明白了为什么handleMessage()方法中可以获取到之前发送的消息了吧!
因此,一个最标准的异步消息处理线程的写法应该是这样:

class LooperThread extends Thread {      public Handler mHandler;      public void run() {          Looper.prepare();          mHandler = new Handler() {              public void handleMessage(Message msg) {                  // process incoming messages here              }          };          Looper.loop();      }  } 

当然,这段代码是从Android官方文档上复制的,不过大家现在再来看这段代码,是不是理解的更加深刻了?
那么我们还是要来继续分析一下,为什么使用异步消息处理的方式就可以对UI进行操作了呢?这是由于Handler总是依附于创建时所在的线程,比如我们的Handler是在主线程中创建的,而在子线程中又无法直接对UI进行操作,于是我们就通过一系列的发送消息、入队、出队等环节,最后调用到了Handler的handleMessage()方法中,这时的handleMessage()方法已经是在主线程中运行的,因而我们当然可以在这里进行UI操作了。整个异步消息处理流程的示意图如下图所示:

另外除了发送消息之外,我们还有以下几种方法可以在子线程中进行UI操作:

  1. Handler的post()方法

  2. View的post()方法

  3. Activity的runOnUiThread()方法

我们先来看下Handler中的post()方法,代码如下所示:

public final boolean post(Runnable r){   return  sendMessageDelayed(getPostMessage(r), 0);} 

原来这里还是调用了sendMessageDelayed()方法去发送一条消息啊,并且还使用了getPostMessage()方法将Runnable对象转换成了一条消息,我们来看下这个方法的源码:

private final Message getPostMessage(Runnable r) {    Message m = Message.obtain();    m.callback = r;    return m;} 

在这个方法中将消息的callback字段的值指定为传入的Runnable对象。咦?这个callback字段看起来有些眼熟啊,喔!在Handler的dispatchMessage()方法中原来有做一个检查,如果Message的callback等于null才会去调用handleMessage()方法,否则就调用handleCallback()方法。那我们快来看下handleCallback()方法中的代码吧:

private final void handleCallback(Message message) {    message.callback.run();} 

也太简单了!竟然就是直接调用了一开始传入的Runnable对象的run()方法。因此在子线程中通过Handler的post()方法进行UI操作就可以这么写:

public class MainActivity extends Activity {    private Handler handler;    @Override    protected void onCreate(Bundle savedInstanceState) {        super.onCreate(savedInstanceState);        setContentView(R.layout.activity_main);        handler = new Handler();        new Thread(new Runnable() {            @Override            public void run() {                handler.post(new Runnable() {                    @Override                    public void run() {                        // 在这里进行UI操作                    }                });            }        }).start();    }} 

虽然写法上相差很多,但是原理是完全一样的,我们在Runnable对象的run()方法里更新UI,效果完全等同于在handleMessage()方法中更新UI。
然后再来看一下View中的post()方法,代码如下所示:

public boolean post(Runnable action) {    Handler handler;    if (mAttachInfo != null) {        handler = mAttachInfo.mHandler;    } else {        ViewRoot.getRunQueue().post(action);        return true;    }    return handler.post(action);}

原来就是调用了Handler中的post()方法,我相信已经没有什么必要再做解释了。
最后再来看一下Activity中的runOnUiThread()方法,代码如下所示:

public final void runOnUiThread(Runnable action) {    if (Thread.currentThread() != mUiThread) {        mHandler.post(action);    } else {        action.run();    }}

如果当前的线程不等于UI线程(主线程),就去调用Handler的post()方法,否则就直接调用Runnable对象的run()方法。还有什么会比这更清晰明了的吗?
通过以上所有源码的分析,我们已经发现了,不管是使用哪种方法在子线程中更新UI,其实背后的原理都是相同的,必须都要借助异步消息处理的机制来实现,而我们又已经将这个机制的流程完全搞明白了,真是一件一本万利的事情啊。

饮水思源:参考文章