深度学习基础系列(四)之 sklearn SVM

来源:互联网 发布:生产玩具知乎 编辑:程序博客网 时间:2024/05/19 00:38

1、背景

1.1 最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在1963年提出

1.2 目前的版本(soft margin)是由Corinna Cortes 和 Vapnik在1993年提出,并在1995年发表

1.3 深度学习(2012)出现之前,SVM被认为机器学习中近十几年来最成功,表现最好的算法

2、举例

2.1 例子
这里写图片描述

两类?哪条线最好?

2.2 SVM寻找区分两类的超平面(hyper plane), 使边际(margin)最大

这里写图片描述

总共可以有多少个可能的超平面?无数条

如何选取使边际(margin)最大的超平面 (Max Margin Hyperplane)?

超平面到一侧最近点的距离等于到另一侧最近点的距离,两侧的两个超平面平行

3、线性可区分(linear separable) 和 线性不可区分 (linear inseparable)

这里写图片描述

这里写图片描述

这里写图片描述

4、定义与公式建立

超平面可以定义为:
这里写图片描述

W: weight vectot, 这里写图片描述
n 是特征值的个数
X: 训练实例
b: bias

这里写图片描述

4.1 假设2维特征向量:X = (x1, X2)
把 b 想象为额外的 wight

超平面方程变为:这里写图片描述

所有超平面右上方的点满足:这里写图片描述
所有超平面左下方的点满足:这里写图片描述

调整weight,使超平面定义边际的两边:
这里写图片描述

综合以上两式,得到(1):
这里写图片描述

所有坐落在边际的两边的的超平面上的被称作”支持向量(support vectors)

分界的超平面和H1或H2上任意一点的距离为 1/|| W || (其中||W||是向量的范数(norm))

这里写图片描述

所以,最大边际距离为:2 / || W ||

5、求解

5.1 SVM如何找出最大边际的超平面呢(MMH)?

利用一些数学推倒,以上公式 (1)可变为有限制的凸优化问题(convex quadratic optimization) 利用 Karush-Kuhn-Tucker (KKT)条件和拉格朗日公式,可以推出MMH可以被表示为以下“决定边界 (decision boundary)”

其中,

{yi} 是支持向量点{Xi} (support vector)的类别标记(class label)

{X^T}是要测试的实例

{alpha _i} 和 {b0} 都是单一数值型参数,由以上提到的最有算法得出

l 是支持向量点的个数

5.2 对于任何测试(要归类的)实例,带入以上公式,得出的符号是正还是负决定

这里写图片描述

这里写图片描述

6、代码:

简单实例:

In [65]:  from sklearn import svmIn [66]: x = [[2, 0], [1, 1], [2, 3]]In [67]: y = [0, 0, 1]In [68]: clf = svm.SVC(kernel = 'linear')In [69]: clf.fit(x, y)Out[69]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,  decision_function_shape=None, degree=3, gamma='auto', kernel='linear',  max_iter=-1, probability=False, random_state=None, shrinking=True,  tol=0.001, verbose=False)In [70]: print(clf)SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,  decision_function_shape=None, degree=3, gamma='auto', kernel='linear',  max_iter=-1, probability=False, random_state=None, shrinking=True,  tol=0.001, verbose=False)In [71]: clf.support_vectors_Out[71]: array([[ 1.,  1.],       [ 2.,  3.]])In [72]: clf.support_Out[72]: array([1, 2], dtype=int32)In [73]: clf.n_support_Out[73]: array([1, 1], dtype=int32)

图例:

#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Tue May 30 09:27:21 2017@author: xiaolian"""print(__doc__)import numpy as npimport pylab as plfrom sklearn import svm# we create 40 separable pointsnp.random.seed(1)X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]Y = [0] * 20 + [1] * 20# fit the modelclf = svm.SVC(kernel='linear')clf.fit(X, Y)# get the separating hyperplanew = clf.coef_[0]a = -w[0] / w[1]xx = np.linspace(-4, 4)yy = a * xx - (clf.intercept_[0]) / w[1]# plot the parallels to the separating hyperplane that pass through the# support vectorsb = clf.support_vectors_[0]yy_down = a * xx + (b[1] - a * b[0])b = clf.support_vectors_[-1]yy_up = a * xx + (b[1] - a * b[0])print("w: ", w)print("a: ", a)# print " xx: ", xx# print " yy: ", yyprint("support_vectors_: ", clf.support_vectors_)print("clf.coef_: ", clf.coef_)# In scikit-learn coef_ attribute holds the vectors of the separating hyperplanes for linear models. It has shape (n_classes, n_features) if n_classes > 1 (multi-class one-vs-all) and (1, n_features) for binary classification.# # In this toy binary classification example, n_features == 2, hence w = coef_[0] is the vector orthogonal to the hyperplane (the hyperplane is fully defined by it + the intercept).# # To plot this hyperplane in the 2D case (any hyperplane of a 2D plane is a 1D line), we want to find a f as in y = f(x) = a.x + b. In this case a is the slope of the line and can be computed by a = -w[0] / w[1].# plot the line, the points, and the nearest vectors to the planepl.plot(xx, yy, 'k-')pl.plot(xx, yy_down, 'k--')pl.plot(xx, yy_up, 'k--')pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],           s=80, facecolors='none')pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)pl.axis('tight')pl.show()

输出:

这里写图片描述

原创粉丝点击