Java 多线程并发编程之互斥锁 Reentrant Lock

来源:互联网 发布:淘宝商品主图素材 编辑:程序博客网 时间:2024/05/22 07:11

Java 中的锁通常分为两种:

  • 通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字。
  • java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。

本篇主要介绍 ReentrantLock(互斥锁)。

ReentrantLock(互斥锁)

ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

    public ReentrantLock() {        sync = new NonfairSync();    }    public ReentrantLock(boolean fair) {        sync = fair ? new FairSync() : new NonfairSync();    }

由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。

一般使用

DEMO1:

public class Test {    private static class Counter {        private ReentrantLock mReentrantLock = new ReentrantLock();        public void count() {            mReentrantLock.lock();            try {                for (int i = 0; i < 6; i++) {                    System.out.println(Thread.currentThread().getName() + ", i = " + i);                }            } finally {            // 必须在 finally 释放锁                mReentrantLock.unlock();            }        }    }    private static class MyThread extends Thread {        private Counter mCounter;        public MyThread(Counter counter) {            mCounter = counter;        }        @Override        public void run() {            super.run();            mCounter.count();        }    }    public static void main(String[] var0) {        Counter counter = new Counter();        // 注:myThread1 和 myThread2 是调用同一个对象 counter        MyThread myThread1 = new MyThread(counter);        MyThread myThread2 = new MyThread(counter);        myThread1.start();        myThread2.start();    }}

DEMO1 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5Thread-1, i = 0Thread-1, i = 1Thread-1, i = 2Thread-1, i = 3Thread-1, i = 4Thread-1, i = 5

DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

DEMO2:

public class Test {    private static class Counter {        private ReentrantLock mReentrantLock = new ReentrantLock();        public void count() {            for (int i = 0; i < 6; i++) {                mReentrantLock.lock();                // 模拟耗时,突出线程是否阻塞                try{                    Thread.sleep(100);                    System.out.println(Thread.currentThread().getName() + ", i = " + i);                } catch (InterruptedException e) {                    e.printStackTrace();                } finally {                // 必须在 finally 释放锁                    mReentrantLock.unlock();                }            }        }        public void doOtherThing(){            for (int i = 0; i < 6; i++) {                // 模拟耗时,突出线程是否阻塞                try {                    Thread.sleep(100);                } catch (InterruptedException e) {                    e.printStackTrace();                }                System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);            }        }    }    public static void main(String[] var0) {        final Counter counter = new Counter();        new Thread(new Runnable() {            @Override            public void run() {                counter.count();            }        }).start();        new Thread(new Runnable() {            @Override            public void run() {                counter.doOtherThing();            }        }).start();    }}

DEMO2 输出:

Thread-0, i = 0Thread-1 doOtherThing, i = 0Thread-0, i = 1Thread-1 doOtherThing, i = 1Thread-0, i = 2Thread-1 doOtherThing, i = 2Thread-0, i = 3Thread-1 doOtherThing, i = 3Thread-0, i = 4Thread-1 doOtherThing, i = 4Thread-0, i = 5Thread-1 doOtherThing, i = 5

DEMO3:

public class Test {    private static class Counter {        private ReentrantLock mReentrantLock = new ReentrantLock();        public void count() {            for (int i = 0; i < 6; i++) {                mReentrantLock.lock();                // 模拟耗时,突出线程是否阻塞                try{                    Thread.sleep(100);                    System.out.println(Thread.currentThread().getName() + ", i = " + i);                } catch (InterruptedException e) {                    e.printStackTrace();                } finally {                    // 必须在 finally 释放锁                    mReentrantLock.unlock();                }            }        }        public void doOtherThing(){            mReentrantLock.lock();            try{                for (int i = 0; i < 6; i++) {                    // 模拟耗时,突出线程是否阻塞                    try {                        Thread.sleep(100);                    } catch (InterruptedException e) {                        e.printStackTrace();                    }                    System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);                }            }finally {                mReentrantLock.unlock();            }        }    }    public static void main(String[] var0) {        final Counter counter = new Counter();        new Thread(new Runnable() {            @Override            public void run() {                counter.count();            }        }).start();        new Thread(new Runnable() {            @Override            public void run() {                counter.doOtherThing();            }        }).start();    }}

DEMO3 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5Thread-1 doOtherThing, i = 0Thread-1 doOtherThing, i = 1Thread-1 doOtherThing, i = 2Thread-1 doOtherThing, i = 3Thread-1 doOtherThing, i = 4Thread-1 doOtherThing, i = 5

结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。

可终止等待

DEMO4:

public class Test {    static final int TIMEOUT = 300;    private static class Counter {        private ReentrantLock mReentrantLock = new ReentrantLock();        public void count() {            try{                //lock() 不可中断                mReentrantLock.lock();                // 模拟耗时,突出线程是否阻塞                for (int i = 0; i < 6; i++) {                    long startTime = System.currentTimeMillis();                    while (true) {                        if (System.currentTimeMillis() - startTime > 100)                            break;                    }                    System.out.println(Thread.currentThread().getName() + ", i = " + i);                }            } finally {                // 必须在 finally 释放锁                mReentrantLock.unlock();            }        }        public void doOtherThing(){            try{                //lockInterruptibly() 可中断,若线程没有中断,则获取锁                mReentrantLock.lockInterruptibly();                for (int i = 0; i < 6; i++) {                    // 模拟耗时,突出线程是否阻塞                    long startTime = System.currentTimeMillis();                    while (true) {                        if (System.currentTimeMillis() - startTime > 100)                            break;                    }                    System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);                }            } catch (InterruptedException e) {                System.out.println(Thread.currentThread().getName() + " 中断 ");            }finally {                // 若当前线程持有锁,则释放                if(mReentrantLock.isHeldByCurrentThread()){                    mReentrantLock.unlock();                }            }        }    }    public static void main(String[] var0) {        final Counter counter = new Counter();        new Thread(new Runnable() {            @Override            public void run() {                counter.count();            }        }).start();        Thread thread2 = new Thread(new Runnable() {            @Override            public void run() {                counter.doOtherThing();            }        });        thread2.start();        long start = System.currentTimeMillis();        while (true){            if (System.currentTimeMillis() - start > TIMEOUT) {                // 若线程还在运行,尝试中断                if(thread2.isAlive()){                    System.out.println(" 不等了,尝试中断 ");                    thread2.interrupt();                }                break;            }        }    }}

DEMO4 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2不等了,尝试中断Thread-1 中断Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 TIMEOUT 改成 3000ms,输出结果:(正常运行)

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-0, i = 3Thread-0, i = 4Thread-0, i = 5Thread-1 doOtherThing, i = 0Thread-1 doOtherThing, i = 1Thread-1 doOtherThing, i = 2Thread-1 doOtherThing, i = 3Thread-1 doOtherThing, i = 4Thread-1 doOtherThing, i = 5

定时锁

DEMO5:

public class Test {    static final int TIMEOUT = 3000;    private static class Counter {        private ReentrantLock mReentrantLock = new ReentrantLock();        public void count() {            try{                //lock() 不可中断                mReentrantLock.lock();                // 模拟耗时,突出线程是否阻塞                for (int i = 0; i < 6; i++) {                    long startTime = System.currentTimeMillis();                    while (true) {                        if (System.currentTimeMillis() - startTime > 100)                            break;                    }                    System.out.println(Thread.currentThread().getName() + ", i = " + i);                }            } finally {                // 必须在 finally 释放锁                mReentrantLock.unlock();            }        }        public void doOtherThing(){            try{                //tryLock(long timeout, TimeUnit unit) 尝试获得锁                boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);                System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);                if(isLock){                    for (int i = 0; i < 6; i++) {                        // 模拟耗时,突出线程是否阻塞                        long startTime = System.currentTimeMillis();                        while (true) {                            if (System.currentTimeMillis() - startTime > 100)                                break;                        }                        System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);                    }                }else{                    System.out.println(Thread.currentThread().getName() + " timeout");                }            } catch (InterruptedException e) {                System.out.println(Thread.currentThread().getName() + " 中断 ");            }finally {                // 若当前线程持有锁,则释放                if(mReentrantLock.isHeldByCurrentThread()){                    mReentrantLock.unlock();                }            }        }    }    public static void main(String[] var0) {        final Counter counter = new Counter();        new Thread(new Runnable() {            @Override            public void run() {                counter.count();            }        }).start();        Thread thread2 = new Thread(new Runnable() {            @Override            public void run() {                counter.doOtherThing();            }        });        thread2.start();    }}

DEMO5 输出:

Thread-0, i = 0Thread-0, i = 1Thread-0, i = 2Thread-1 isLock:falseThread-1 timeoutThread-0, i = 3Thread-0, i = 4Thread-0, i = 5

tryLock() 尝试获得锁,tryLock(long timeout, TimeUnit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之间如何选择?

ReentrantLock 在性能上 比 synchronized 更胜一筹。

ReentrantLock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。

synchronized 隐式自动释放锁,使用方便。

ReentrantLock 扩展性好,可中断锁,定时锁,自由控制。

synchronized 一但进入阻塞等待,则无法中断等待。

原创粉丝点击