AES加密算法 ECB模式 ISO10126填充

来源:互联网 发布:360人工智能研究院招聘 编辑:程序博客网 时间:2024/05/16 19:36

AES加密的过程:
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
ECB模式:
分组加密,分组解密。
ISO10126:
这是填充方式的一种,旨将原文的长度边长组的大小的整数倍。
最后一个填充是填充的字节数,其它位随机数。

代码如下:

/* * 参考资料: * ISO10126:https://en.wikipedia.org/wiki/Padding_(cryptography)#ISO_10126 * AES 算法过程: * https://en.wikipedia.org/wiki/Advanced_Encryption_Standard * http://blog.csdn.net/lisonglisonglisong/article/details/41909813 * ECB 模式实现思想: * http://blog.csdn.net/sevenlater/article/details/50317999 */#include <stdio.h>#include <stdlib.h>#include <stdint.h>#include <time.h>#include <string.h>/* * GF(2^8)的过程 */uint8_t gmult(uint8_t a, uint8_t b) {    uint8_t p = 0, i = 0, hbs = 0;    for (i = 0; i < 8; i++) {        if (b & 1) {            p ^= a;        }        hbs = a & 0x80;        a <<= 1;        if (hbs) a ^= 0x1b; // 0000 0001 0001 1011        b >>= 1;    }    return (uint8_t)p;}/* * 四字节的加法 */void coef_add(uint8_t a[], uint8_t b[], uint8_t d[]) {    d[0] = a[0]^b[0];    d[1] = a[1]^b[1];    d[2] = a[2]^b[2];    d[3] = a[3]^b[3];}/* * 四字节的乘法 */void coef_mult(uint8_t *a, uint8_t *b, uint8_t *d) {    d[0] = gmult(a[0],b[0])^gmult(a[3],b[1])^gmult(a[2],b[2])^gmult(a[1],b[3]);    d[1] = gmult(a[1],b[0])^gmult(a[0],b[1])^gmult(a[3],b[2])^gmult(a[2],b[3]);    d[2] = gmult(a[2],b[0])^gmult(a[1],b[1])^gmult(a[0],b[2])^gmult(a[3],b[3]);    d[3] = gmult(a[3],b[0])^gmult(a[2],b[1])^gmult(a[1],b[2])^gmult(a[0],b[3]);}/* * AES-128 分组大小为4 */int Nb = 4;/* * AES-128 分组长度是4 */int Nk = 4;/* * AES-128 轮数是10 */int Nr = 10;/* * S-box 的表 */static uint8_t s_box[256] = {    // 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // a    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // b    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // c    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // d    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // e    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};// f/* * 逆置s_box表 */static uint8_t inv_s_box[256] = {    // 0     1     2     3     4     5     6     7     8     9     a     b     c     d     e     f    0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0    0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 1    0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 2    0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 3    0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 4    0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 5    0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 6    0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 7    0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 8    0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 9    0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // a    0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // b    0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // c    0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // d    0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // e    0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};// f/* * 轮常数 */uint8_t R[] = {0x02, 0x00, 0x00, 0x00};uint8_t * Rcon(uint8_t i) {    if (i == 1) {        R[0] = 0x01; // x^(1-1) = x^0 = 1    } else if (i > 1) {        R[0] = 0x02;        i--;        while (i-1 > 0) {            R[0] = gmult(R[0], 0x02);            i--;        }    }    return R;}/* * 算法中add_round_key步骤 */void add_round_key(uint8_t *state, uint8_t *w, uint8_t r) {    uint8_t c;    for (c = 0; c < Nb; c++) {        state[Nb*0+c] = state[Nb*0+c]^w[4*Nb*r+4*c+0];        state[Nb*1+c] = state[Nb*1+c]^w[4*Nb*r+4*c+1];        state[Nb*2+c] = state[Nb*2+c]^w[4*Nb*r+4*c+2];        state[Nb*3+c] = state[Nb*3+c]^w[4*Nb*r+4*c+3];    }}/* * 算法中mix_columns步骤 */void mix_columns(uint8_t *state) {    uint8_t a[] = {0x02, 0x01, 0x01, 0x03}; // a(x) = {02} + {01}x + {01}x2 + {03}x3    uint8_t i, j, col[4], res[4];    for (j = 0; j < Nb; j++) {        for (i = 0; i < 4; i++) {            col[i] = state[Nb*i+j];        }        coef_mult(a, col, res);        for (i = 0; i < 4; i++) {            state[Nb*i+j] = res[i];        }    }}/* * 算法中逆mix_columns步骤 */void inv_mix_columns(uint8_t *state) {    uint8_t a[] = {0x0e, 0x09, 0x0d, 0x0b}; // a(x) = {0e} + {09}x + {0d}x2 + {0b}x3    uint8_t i, j, col[4], res[4];    for (j = 0; j < Nb; j++) {        for (i = 0; i < 4; i++) {            col[i] = state[Nb*i+j];        }        coef_mult(a, col, res);        for (i = 0; i < 4; i++) {            state[Nb*i+j] = res[i];        }    }}/* * 算法中shift_rows步骤 */void shift_rows(uint8_t *state) {    uint8_t i, k, s, tmp;    for (i = 1; i < 4; i++) {        s = 0;        while (s < i) {            tmp = state[Nb*i+0];            for (k = 1; k < Nb; k++) {                state[Nb*i+k-1] = state[Nb*i+k];            }            state[Nb*i+Nb-1] = tmp;            s++;        }    }}/* * 算法中逆shift_rows步骤 */void inv_shift_rows(uint8_t *state) {    uint8_t i, k, s, tmp;    for (i = 1; i < 4; i++) {        s = 0;        while (s < i) {            tmp = state[Nb*i+Nb-1];            for (k = Nb-1; k > 0; k--) {                state[Nb*i+k] = state[Nb*i+k-1];            }            state[Nb*i+0] = tmp;            s++;        }    }}/* * 算法中sub_bytes步骤 */void sub_bytes(uint8_t *state) {    uint8_t i, j;    uint8_t row, col;    for (i = 0; i < 4; i++) {        for (j = 0; j < Nb; j++) {            row = (state[Nb*i+j] & 0xf0) >> 4;            col = state[Nb*i+j] & 0x0f;            state[Nb*i+j] = s_box[16*row+col];        }    }}/* * 算法中逆sub_bytes步骤 */void inv_sub_bytes(uint8_t *state) {    uint8_t i, j;    uint8_t row, col;    for (i = 0; i < 4; i++) {        for (j = 0; j < Nb; j++) {            row = (state[Nb*i+j] & 0xf0) >> 4;            col = state[Nb*i+j] & 0x0f;            state[Nb*i+j] = inv_s_box[16*row+col];        }    }}/* * 秘钥扩展时用到的S盒变换 */void sub_word(uint8_t *w) {    uint8_t i;    for (i = 0; i < 4; i++) {        w[i] = s_box[16*((w[i] & 0xf0) >> 4) + (w[i] & 0x0f)];    }}/* * 在秘钥扩展时进行位置变换 */void rot_word(uint8_t *w) {    uint8_t tmp;    uint8_t i;    tmp = w[0];    for (i = 0; i < 3; i++) {        w[i] = w[i+1];    }    w[3] = tmp;}/* * 秘钥扩展程序 */void key_expansion(uint8_t *key, uint8_t *w) {    uint8_t tmp[4];    uint8_t i, j;    uint8_t len = Nb*(Nr+1);    for (i = 0; i < Nk; i++) {        w[4*i+0] = key[4*i+0];        w[4*i+1] = key[4*i+1];        w[4*i+2] = key[4*i+2];        w[4*i+3] = key[4*i+3];    }    for (i = Nk; i < len; i++) {        tmp[0] = w[4*(i-1)+0];        tmp[1] = w[4*(i-1)+1];        tmp[2] = w[4*(i-1)+2];        tmp[3] = w[4*(i-1)+3];        if (i%Nk == 0) {            rot_word(tmp);            sub_word(tmp);            coef_add(tmp, Rcon(i/Nk), tmp);        } else if (Nk > 6 && i%Nk == 4) {            sub_word(tmp);        }        w[4*i+0] = w[4*(i-Nk)+0]^tmp[0];        w[4*i+1] = w[4*(i-Nk)+1]^tmp[1];        w[4*i+2] = w[4*(i-Nk)+2]^tmp[2];        w[4*i+3] = w[4*(i-Nk)+3]^tmp[3];    }}/* * 加密程序 */void cipher(uint8_t *in, uint8_t *out, uint8_t *w) {    uint8_t state[4*Nb];    uint8_t r, i, j;    for (i = 0; i < 4; i++) {        for (j = 0; j < Nb; j++) {            state[Nb*i+j] = in[i+4*j];        }    }    add_round_key(state, w, 0);    for (r = 1; r < Nr; r++) {        sub_bytes(state);        shift_rows(state);        mix_columns(state);        add_round_key(state, w, r);    }    sub_bytes(state);    shift_rows(state);    add_round_key(state, w, Nr);    for (i = 0; i < 4; i++) {        for (j = 0; j < Nb; j++) {            out[i+4*j] = state[Nb*i+j];        }    }}/* * 解密程序 */void inv_cipher(uint8_t *in, uint8_t *out, uint8_t *w) {    uint8_t state[4*Nb];    uint8_t r, i, j;    for (i = 0; i < 4; i++) {        for (j = 0; j < Nb; j++) {            state[Nb*i+j] = in[i+4*j];        }    }    add_round_key(state, w, Nr);    for (r = Nr-1; r >= 1; r--) {        inv_shift_rows(state);        inv_sub_bytes(state);        add_round_key(state, w, r);        inv_mix_columns(state);    }    inv_shift_rows(state);    inv_sub_bytes(state);    add_round_key(state, w, 0);    for (i = 0; i < 4; i++) {        for (j = 0; j < Nb; j++) {            out[i+4*j] = state[Nb*i+j];        }    }}int main() {    printf("本程序采用ECB模式,默认密码128bit,填充方式ISO10126\n");    srand((unsigned)time(NULL));    char input_str[1000];    uint8_t in[16];    char key_str[130];    uint8_t key[16];    printf("请输入16个字符以内的密码:\n");    gets(key_str);    //填充秘钥为128bit。    int pos = 0, key_len = strlen(key_str);    for(int j = 0; j < 4; j++) {        for(int k = 0; k < 4; k++) {            if(pos < key_len)                key[j*4+k] = key_str[pos++];            else {                key[j*4+k] = rand()%128;                if(j==3 && k==3)                    key[j*4+k] = 16 - key_len;            }        }    }    printf("请输入您需要加密的数据: \n");    gets(input_str);    //填充数据为若干个128bit的数据块儿。    int in_len = strlen(input_str);    int rounds = in_len%16 ? in_len/16+1 : in_len/16;    for(int t = 0; t < rounds; t++) {        pos = t*16;        for(int j = 0; j < 4; j++) {            for(int k = 0; k < 4; k++) {                if(pos < in_len)                    in[j*4+k] = input_str[pos++];                else {                    in[j*4+k] = rand()%128;                    if(j==3 && k==3)                        in[j*4+k] = 16*rounds - in_len;                }            }        }        uint8_t out[16]; // 128        uint8_t *w; // 扩展秘钥        w = (uint8_t *)malloc(Nb*(Nr+1)*4);        key_expansion(key, w);        cipher(in, out, w);        printf("加密后的信息:\n");        for (int i = 0; i < 4; i++) {            for(int j = 0; j < 4; j++)                printf("%x ", out[4*i+j]);        }        printf("\n");        inv_cipher(out, in, w);        printf("解密后的结果:\n");        for (int i = 0; i < 4; i++) {            for(int j = 0; j < 4; j++) {                if(4*i+j < in_len)                    printf("%c", in[4*i+j]);            }        }        printf("\n");    }    return 0;}
原创粉丝点击