表、栈和队列

来源:互联网 发布:mac页面比例缩小快捷键 编辑:程序博客网 时间:2024/05/23 19:18

表、栈和队列

增强的for循环

List<? extends Integer> l = ...for (float i : l) {    ...}same as:(编译器使用迭代器进行改写)for (Iterator<Integer> i = l.iterator(); i.hasNext();) {    float i0 = (Integer)i.next();}

这段代码对于任何实现了Iterable接口的对象都可以起作用。

对于数组:

T[] a = Expression;L1: L2: ... Lm:for (int i = 0; i < a.length; i++) {    {VariableModifier} TargetType Identifier = a[i];    Statement}

REF http://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.14.2

如果对正在被迭代的集合进行结构上的改变(即对该集合使用add、remove或clear方法),那么迭代器就不再合法(看源码可以发现是通过一个modCount的变量进行判断总共修改次数的),但是,如果迭代器调用自己的remove方法,那么这个迭代器就仍然是合法的

关于ArrayList和LinkedList的选择

ArrayList底层是用数组实现的,LinkedList则是用双向列表。ArrayList的查找和修改修很快(get和set),都是常数时间(直接修改数组对应索引的值即可),但是都说LinkedList的插入和删除很快,的确,如果是知道结点的位置,插入和删除确实很快,常数时间就可以。但是,在插入前,肯定要先遍历找到结点,这是一个跟N有关的操作。源码中是node(inde index)方法,它是首先判断index的与中间位置的关系,在前半段就通过头结点来进行查找,在后半段就通过尾结点进行查找,确实比ArrayList移动数据快,但也不是常数时间的操作。具体可以查看when-to-use-linkedlist-over-arraylist。

总结一下:

For LinkedList:

  1. get(int index) is O(n/4) average
  2. add(E element) is O(1)
  3. add(int index, E element) is O(n/4) average, but O(1) when index = 0 <— main benefit of LinkedList
  4. remove(int index) is O(n/4) average
  5. Iterator.remove() is O(1) <— main benefit of LinkedList
  6. ListIterator.add(E element) is O(1) <— main benefit of LinkedList

Note: O(n/4) is average, O(1) best case (e.g. index = 0), O(n/2) worst case (middle of list)

For ArrayList

  1. get(int index) is O(1) <— main benefit of ArrayList
  2. add(E element) is O(1) amortized, but O(n) worst-case since the array must be resized and copied
  3. add(int index, E element) is O(n/2) average
  4. remove(int index) is O(n/2) average
  5. Iterator.remove() is O(n/2) average
  6. ListIterator.add(E element) is O(n/2) average

Note: O(n/2) is average, O(1) best case (end of list), O(n) worst case (start of list)

关于ArrayList和LinkedList,修改list立马抛出异常

AbstactList中有一个int值modCount,对它的注释是:

* The number of times this list has been <i>structurally modified</i>.* Structural modifications are those that change the size of the* list, or otherwise perturb it in such a fashion that iterations in* progress may yield incorrect results.

可以看到这个值的作用就是记录那些对list的尺寸有了改动或者对list内部进行了改动导致iterations不能正确执行的修改次数,而在ArrayList和LinkedList的clear()、add()、remove()、sort()等对这个值都进行了modCount++,在Iterator中的next()方法中,会首先执行checkForComodification()方法:

final void checkForComodification() {    if (modCount != expectedModCount)        throw new ConcurrentModificationException();}

所以只要修改了list,立马就会抛出异常。

ArrayList

transient Object[] elementData; // non-private to simplify nested class accessprivate int size;

一个是放数据的数组,一个是代表当前数据多少的整型。

再贴几个常用的方法的具体实现:

    //因此是常数级(添加在末端)    public boolean add(E e) {        ensureCapacityInternal(size + 1);  // Increments modCount!!        elementData[size++] = e;        return true;    }    public void add(int index, E element) {        rangeCheckForAdd(index);        ensureCapacityInternal(size + 1);  // Increments modCount!!        /*         * Copies an array from the specified source array, beginning at the        * specified position, to the specified position of the destination array.        * @param      src      the source array.        * @param      srcPos   starting position in the source array.        * @param      dest     the destination array.        * @param      destPos  starting position in the destination data.        * @param      length   the number of array elements to be copied.        public static native void arraycopy(Object src,  int  srcPos,                                        Object dest, int destPos,                                        int length);        */        System.arraycopy(elementData, index, elementData, index + 1,                         size - index);//一个native方法        elementData[index] = element;        size++;    }    public E set(int index, E element) {        rangeCheck(index);        E oldValue = elementData(index);        elementData[index] = element;        return oldValue;    }    public E get(int index) {        rangeCheck(index);        return elementData(index);    }    public E remove(int index) {        rangeCheck(index);        modCount++;        E oldValue = elementData(index);        int numMoved = size - index - 1;        if (numMoved > 0)            System.arraycopy(elementData, index+1, elementData, index,                             numMoved);        elementData[--size] = null; // clear to let GC do its work        return oldValue;    }    //可以看到是remove掉第一个符合条件的数据    public boolean remove(Object o) {        if (o == null) {            for (int index = 0; index < size; index++)                if (elementData[index] == null) {                    fastRemove(index);                    return true;                }        } else {            for (int index = 0; index < size; index++)                if (o.equals(elementData[index])) {                    fastRemove(index);                    return true;                }        }        return false;    }

LinkedList

    private static class Node<E> {        E item;        Node<E> next;        Node<E> prev;        Node(Node<E> prev, E element, Node<E> next) {            this.item = element;            this.next = next;            this.prev = prev;        }    }

用到的数据结构,可以看到其实是一个双向链表。

transient int size = 0;transient Node<E> first;transient Node<E> last;

分别代表头指针和尾指针。

贴一下常用方法的实现:

    /**     * Links e as last element.     */    void linkLast(E e) {        final Node<E> l = last;        final Node<E> newNode = new Node<>(l, e, null);        last = newNode;        if (l == null)            first = newNode;        else            l.next = newNode;        size++;        modCount++;    }    /**     * Inserts element e before non-null Node succ.     */    void linkBefore(E e, Node<E> succ) {        // assert succ != null;        final Node<E> pred = succ.prev;        final Node<E> newNode = new Node<>(pred, e, succ);        succ.prev = newNode;        if (pred == null)            first = newNode;        else            pred.next = newNode;        size++;        modCount++;    }    /**     * Returns the (non-null) Node at the specified element index.     */    Node<E> node(int index) {        // assert isElementIndex(index);        if (index < (size >> 1)) {            Node<E> x = first;            for (int i = 0; i < index; i++)                x = x.next;            return x;        } else {            Node<E> x = last;            for (int i = size - 1; i > index; i--)                x = x.prev;            return x;        }    }    /**     * Unlinks non-null node x.     */    E unlink(Node<E> x) {        // assert x != null;        final E element = x.item;        final Node<E> next = x.next;        final Node<E> prev = x.prev;        if (prev == null) {            first = next;        } else {            prev.next = next;            x.prev = null;        }        if (next == null) {            last = prev;        } else {            next.prev = prev;            x.next = null;        }        x.item = null;        size--;        modCount++;        return element;    }    public boolean add(E e) {        linkLast(e);        return true;    }    public void add(int index, E element) {        checkPositionIndex(index);        if (index == size)            linkLast(element);        else            linkBefore(element, node(index));    }    public E get(int index) {        checkElementIndex(index);        return node(index).item;    }    public E set(int index, E element) {        checkElementIndex(index);        Node<E> x = node(index);        E oldVal = x.item;        x.item = element;        return oldVal;    }    public E remove(int index) {        checkElementIndex(index);        return unlink(node(index));    }

LinkedList还提供了快速获取头尾结点,或者是remove头尾结点的方法。removeFirst、removeLast、getFirst、getLast、addFirst、addLast。。。等等,源码不难,理解了这几点,都可以看懂。

所谓栈,就是一种LIFO(last-in-first-out)表,在Java中是通过继承Vector实现的,主要添加了几个操作让它成为一个栈:

    /**     * Pushes an item onto the top of this stack. This has exactly     * the same effect as:     * <blockquote><pre>     * addElement(item)</pre></blockquote>     *     * @param   item   the item to be pushed onto this stack.     * @return  the <code>item</code> argument.     * @see     java.util.Vector#addElement     */    public E push(E item) {        addElement(item);        return item;    }    /**     * Removes the object at the top of this stack and returns that     * object as the value of this function.     *     * @return  The object at the top of this stack (the last item     *          of the <tt>Vector</tt> object).     * @throws  EmptyStackException  if this stack is empty.     */    public synchronized E pop() {        E       obj;        int     len = size();        obj = peek();        removeElementAt(len - 1);        return obj;    }    /**     * Looks at the object at the top of this stack without removing it     * from the stack.     *     * @return  the object at the top of this stack (the last item     *          of the <tt>Vector</tt> object).     * @throws  EmptyStackException  if this stack is empty.     */    public synchronized E peek() {        int     len = size();        if (len == 0)            throw new EmptyStackException();        return elementAt(len - 1);    }

可以看到所有方法都是同步的(addElement()是同步的),方法的实现也都是用的Vector里的方法(好像Vector是是JDK1.0的遗留产物了,是不是不推荐用了?而且继承Vector,那不是很多跟栈不相关的方法也都可以访问到?)。

栈的应用

平衡符号

就是判断左右括号是否可以闭合:

做一个空栈。读入字符直到文件结尾。如果字符是一个开放符号(左边),则将其推入栈中。如果字符是一个封闭符号,则当栈空是报错。否则,将栈元素弹出。如果弹出的符号不是对应的开放符号,则报错。在文件结尾,如果栈非空则报错。

后缀表达式

即逆波兰表示法,所有操作符置于操作数的后面,因此也被称为后缀表示法。逆波兰记法不需要括号来标识操作符的优先级。

解算方法:

当见到一个数时就把它推入栈中,在遇到一个运算符时该运算符就作用于从该栈弹出的两个数上,再将所得到的结果推入栈中。

中缀到后缀的转换

所谓中缀,就是我们正常时候的表达式,转换方式也可以借助栈来实现:

从左到右遍历中缀表达式的每个操作数和操作符。当读到操作数时,立即把它输出,即成为后缀表达式的一部分;若读到操作符,判断该符号与栈顶符号的优先级,若该符号优先级高于栈顶元素,则将该操作符入栈,否则把栈中运算符弹出并加到后缀表达式尾端,直到遇到优先级低于该操作符的栈元素,然后把该操作符压入栈中。如果遇到”(”,直接压入栈中,除非正在处理“)”否则“(”不会从栈中弹出,如果遇到一个”)”,那么就将直到“(”的所有栈元素弹出并加到后缀表达式尾端,但左右括号并不输出。最后,如果读到中缀表达式的尾端,将栈元素依次完全弹出并加到后缀表达式尾端。

例如a+b*c+(d*e+f)*g 可以转成 abc*+de*f+g*+1 + (( 2 + 3)* 4 ) – 5可以转成123+4*+5-

方法调用

递归就是不停的将方法压到方法栈中,到达结束条件再一个个弹出来。

队列

所谓队列就是FIFO(first-in-first-out)的表,Java中的LinkedList实现了Queue,可以用Queue接口来窄化LinkedList的方法,Queue queue = new LinkedList(),这样就只能访问Queue中的方法。主要有以下几个方法:

public interface Queue<E> extends Collection<E> {    /**     * Inserts the specified element into this queue if it is possible to do so     * immediately without violating capacity restrictions, returning     * {@code true} upon success and throwing an {@code IllegalStateException}     * if no space is currently available.     *     * @param e the element to add     * @return {@code true} (as specified by {@link Collection#add})     * @throws IllegalStateException if the element cannot be added at this     *         time due to capacity restrictions     * @throws ClassCastException if the class of the specified element     *         prevents it from being added to this queue     * @throws NullPointerException if the specified element is null and     *         this queue does not permit null elements     * @throws IllegalArgumentException if some property of this element     *         prevents it from being added to this queue     */    boolean add(E e);    /**     * Inserts the specified element into this queue if it is possible to do     * so immediately without violating capacity restrictions.     * When using a capacity-restricted queue, this method is generally     * preferable to {@link #add}, which can fail to insert an element only     * by throwing an exception.     *     * @param e the element to add     * @return {@code true} if the element was added to this queue, else     *         {@code false}     * @throws ClassCastException if the class of the specified element     *         prevents it from being added to this queue     * @throws NullPointerException if the specified element is null and     *         this queue does not permit null elements     * @throws IllegalArgumentException if some property of this element     *         prevents it from being added to this queue     */    boolean offer(E e);    /**     * Retrieves and removes the head of this queue.  This method differs     * from {@link #poll poll} only in that it throws an exception if this     * queue is empty.     *     * @return the head of this queue     * @throws NoSuchElementException if this queue is empty     */    E remove();    /**     * Retrieves and removes the head of this queue,     * or returns {@code null} if this queue is empty.     *     * @return the head of this queue, or {@code null} if this queue is empty     */    E poll();    /**     * Retrieves, but does not remove, the head of this queue.  This method     * differs from {@link #peek peek} only in that it throws an exception     * if this queue is empty.     *     * @return the head of this queue     * @throws NoSuchElementException if this queue is empty     */    E element();    /**     * Retrieves, but does not remove, the head of this queue,     * or returns {@code null} if this queue is empty.     *     * @return the head of this queue, or {@code null} if this queue is empty     */    E peek();}

队列的应用

操作系统的各种数据缓冲区的先进先出管理,应用系统中的各种事件排队管理等等

判断回文

所谓回文就是一个字符序列以中间字符基准两边字符完全相同。解决方法可以将字符逐个分别放入队列和栈中,依次弹出,看是否相等,如果全部相等则是回文。

原创粉丝点击