CMake 入门实战(转)

来源:互联网 发布:java流程引擎activity 编辑:程序博客网 时间:2024/06/05 03:01

官方文档,https://cmake.org/cmake/help/v3.0/index.html


什么是 CMake

你或许听过好几种 Make 工具,例如 GNU Make ,QT 的 qmake ,微软的 MS nmake,BSD Make(pmake),Makepp,等等。这些 Make 工具遵循着不同的规范和标准,所执行的 Makefile 格式也千差万别。这样就带来了一个严峻的问题:如果软件想跨平台,必须要保证能够在不同平台编译。而如果使用上面的 Make 工具,就得为每一种标准写一次 Makefile ,这将是一件让人抓狂的工作。
CMake就是针对上面问题所设计的工具:它首先允许开发者编写一种平台无关的 CMakeList.txt 文件来定制整个编译流程,然后再根据目标用户的平台进一步生成所需的本地化 Makefile 和工程文件,如 Unix 的 Makefile 或 Windows 的 Visual Studio 工程。从而做到“Write once, run everywhere”。显然,CMake 是一个比上述几种 make 更高级的编译配置工具。一些使用 CMake 作为项目架构系统的知名开源项目有 VTK、ITK、KDE、OpenCV、OSG 等 。

在 linux 平台下使用 CMake 生成 Makefile 并编译的流程如下:

  1. 编写 CMake 配置文件 CMakeLists.txt 。
  2. 执行命令 cmake PATH 或者 ccmake PATH 生成 Makefile 。其中, PATH 是 CMakeLists.txt 所在的目录。
  3. 使用 make 命令进行编译。

本文将从实例入手,一步步讲解 CMake 的常见用法,

入门案例:单个源文件

对于简单的项目,只需要写几行代码就可以了。例如,假设现在我们的项目中只有一个源文件 main.cc ,该程序的用途是计算一个数的指数幂。

#include <stdio.h>#include <stdlib.h>/** * power - Calculate the power of number. * @param base: Base value. * @param exponent: Exponent value. * * @return base raised to the power exponent. */double power(double base, int exponent){    int result = base;    int i;    if (exponent == 0) {        return 1;    }    for(i = 1; i < exponent; ++i){        result = result * base;    }    return result;}int main(int argc, char *argv[]){    if (argc < 3){        printf("Usage: %s base exponent \n", argv[0]);        return 1;    }    double base = atof(argv[1]);    int exponent = atoi(argv[2]);    double result = power(base, exponent);    printf("%g ^ %d is %g\n", base, exponent, result);    return 0;}

编写 CMakeLists.txt

首先编写 CMakeLists.txt 文件,并保存在与 main.cc 源文件同个目录下:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo1)# 指定生成目标add_executable(Demo main.cc)

CMakeLists.txt 的语法比较简单,由命令、注释和空格组成,其中命令是不区分大小写的。符号 # 后面的内容被认为是注释。命令由命令名称、小括号和参数组成,参数之间使用空格进行间隔。

对于上面的 CMakeLists.txt 文件,依次出现了几个命令:

cmake_minimum_required:指定运行此配置文件所需的 CMake 的最低版本;project:参数值是 Demo1,该命令表示项目的名称是 Demo1 。add_executable: 将名为 main.cc 的源文件编译成一个名称为 Demo 的可执行文件。

多个源文件

同一目录,多个源文件

上面的例子只有单个源文件。现在假如把 power 函数单独写进一个名为 MathFunctions.c 的源文件里,使得这个工程变成如下的形式:

./Demo2    |    +--- main.cc    |    +--- MathFunctions.cc    |    +--- MathFunctions.h

这个时候,CMakeLists.txt 可以改成如下的形式:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo2)# 指定生成目标add_executable(Demo main.cc MathFunctions.cc)

唯一的改动只是在 add_executable 命令中增加了一个 MathFunctions.cc 源文件。这样写当然没什么问题,但是如果源文件很多,把所有源文件的名字都加进去将是一件烦人的工作。更省事的方法是使用 aux_source_directory 命令,该命令会查找指定目录下的所有源文件,然后将结果存进指定变量名。其语法如下:

aux_source_directory(<dir> <variable>)

因此,可以修改 CMakeLists.txt 如下:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo2)# 查找当前目录下的所有源文件# 并将名称保存到 DIR_SRCS 变量aux_source_directory(. DIR_SRCS)# 指定生成目标add_executable(Demo ${DIR_SRCS})

这样,CMake 会将当前目录所有源文件的文件名赋值给变量 DIR_SRCS ,再指示变量 DIR_SRCS 中的源文件需要编译成一个名称为 Demo 的可执行文件。

多个目录,多个源文件

现在进一步将 MathFunctions.h 和 MathFunctions.cc 文件移动到 math 目录下。

./Demo3    |    +--- main.cc    |    +--- math/          |          +--- MathFunctions.cc          |          +--- MathFunctions.h

对于这种情况,需要分别在项目根目录 Demo3 和 math 目录里各编写一个 CMakeLists.txt 文件。为了方便,我们可以先将 math 目录里的文件编译成静态库再由 main 函数调用。

根目录中的 CMakeLists.txt :

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo3)# 查找当前目录下的所有源文件# 并将名称保存到 DIR_SRCS 变量aux_source_directory(. DIR_SRCS)# 添加 math 子目录add_subdirectory(math)# 指定生成目标 add_executable(Demo main.cc)# 添加链接库target_link_libraries(Demo MathFunctions)

该文件添加了下面的内容: 第3行,使用命令 add_subdirectory 指明本项目包含一个子目录 math,这样 math 目录下的 CMakeLists.txt 文件和源代码也会被处理 。第6行,使用命令 target_link_libraries 指明可执行文件 main 需要连接一个名为 MathFunctions 的链接库 。

子目录中的 CMakeLists.txt:

# 查找当前目录下的所有源文件# 并将名称保存到 DIR_LIB_SRCS 变量aux_source_directory(. DIR_LIB_SRCS)# 生成链接库add_library (MathFunctions ${DIR_LIB_SRCS})

在该文件中使用命令 add_library 将 src 目录中的源文件编译为静态链接库。

自定义编译选项

CMake 允许为项目增加编译选项,从而可以根据用户的环境和需求选择最合适的编译方案。

例如,可以将 MathFunctions 库设为一个可选的库,如果该选项为 ON ,就使用该库定义的数学函数来进行运算。否则就调用标准库中的数学函数库。

修改 CMakeLists 文件

我们要做的第一步是在顶层的 CMakeLists.txt 文件中添加该选项:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo4)# 加入一个配置头文件,用于处理 CMake 对源码的设置configure_file (  "${PROJECT_SOURCE_DIR}/config.h.in"  "${PROJECT_BINARY_DIR}/config.h"  )# 是否使用自己的 MathFunctions 库option (USE_MYMATH       "Use provided math implementation" ON)# 是否加入 MathFunctions 库if (USE_MYMATH)  include_directories ("${PROJECT_SOURCE_DIR}/math")  add_subdirectory (math)    set (EXTRA_LIBS ${EXTRA_LIBS} MathFunctions)endif (USE_MYMATH)# 查找当前目录下的所有源文件# 并将名称保存到 DIR_SRCS 变量aux_source_directory(. DIR_SRCS)# 指定生成目标add_executable(Demo ${DIR_SRCS})target_link_libraries (Demo  ${EXTRA_LIBS})

其中:

第7行的 configure_file 命令用于加入一个配置头文件 config.h ,这个文件由 CMake 从 config.h.in 生成,通过这样的机制,将可以通过预定义一些参数和变量来控制代码的生成。
第13行的 option 命令添加了一个 USE_MYMATH 选项,并且默认值为 ON 。
第17行根据 USE_MYMATH 变量的值来决定是否使用我们自己编写的 MathFunctions 库。

修改 main.cc 文件

之后修改 main.cc 文件,让其根据 USE_MYMATH 的预定义值来决定是否调用标准库还是 MathFunctions 库:

#include #include #include "config.h"#ifdef USE_MYMATH  #include "math/MathFunctions.h"#else  #include #endifint main(int argc, char *argv[]){    if (argc < 3){        printf("Usage: %s base exponent \n", argv[0]);        return 1;    }    double base = atof(argv[1]);    int exponent = atoi(argv[2]);#ifdef USE_MYMATH    printf("Now we use our own Math library. \n");    double result = power(base, exponent);#else    printf("Now we use the standard library. \n");    double result = pow(base, exponent);#endif    printf("%g ^ %d is %g\n", base, exponent, result);    return 0;}

编写 config.h.in 文件

上面的程序值得注意的是第2行,这里引用了一个 config.h 文件,这个文件预定义了 USE_MYMATH 的值。但我们并不直接编写这个文件,为了方便从 CMakeLists.txt 中导入配置,我们编写一个 config.h.in 文件,内容如下:

#cmakedefine USE_MYMATH

这样 CMake 会自动根据 CMakeLists 配置文件中的设置自动生成 config.h 文件。

安装和测试

CMake 也可以指定安装规则,以及添加测试。这两个功能分别可以通过在产生 Makefile 后使用 make install 和 make test 来执行。在以前的 GNU Makefile 里,你可能需要为此编写 install 和 test 两个伪目标和相应的规则,但在 CMake 里,这样的工作同样只需要简单的调用几条命令。

定制安装规则

首先先在 math/CMakeLists.txt 文件里添加下面两行:

# 指定 MathFunctions 库的安装路径install (TARGETS MathFunctions DESTINATION bin)install (FILES MathFunctions.h DESTINATION include)

明 MathFunctions 库的安装路径。之后同样修改根目录的 CMakeLists 文件,在末尾添加下面几行:

# 指定安装路径install (TARGETS Demo DESTINATION bin)install (FILES "${PROJECT_BINARY_DIR}/config.h"         DESTINATION include)

过上面的定制,生成的 Demo 文件和 MathFunctions 函数库 libMathFunctions.o 文件将会被复制到 /usr/local/bin 中,而 MathFunctions.h 和生成的 config.h 文件则会被复制到 /usr/local/include 中。顺带一提的是,这里的 /usr/local/ 是默认安装到的根目录,可以通过修改 CMAKE_INSTALL_PREFIX 变量的值来指定这些文件应该拷贝到哪个根目录。

为工程添加测试

添加测试同样很简单。CMake 提供了一个称为 CTest 的测试工具。我们要做的只是在项目根目录的 CMakeLists 文件中调用一系列的 add_test 命令。

# 启用测试enable_testing()# 测试程序是否成功运行add_test (test_run Demo 5 2)# 测试帮助信息是否可以正常提示add_test (test_usage Demo)set_tests_properties (test_usage  PROPERTIES PASS_REGULAR_EXPRESSION "Usage: .* base exponent")# 测试 5 的平方add_test (test_5_2 Demo 5 2)set_tests_properties (test_5_2 PROPERTIES PASS_REGULAR_EXPRESSION "is 25")# 测试 10 的 5 次方add_test (test_10_5 Demo 10 5)set_tests_properties (test_10_5 PROPERTIES PASS_REGULAR_EXPRESSION "is 100000")# 测试 2 的 10 次方add_test (test_2_10 Demo 2 10)set_tests_properties (test_2_10 PROPERTIES PASS_REGULAR_EXPRESSION "is 1024")

上面的代码包含了四个测试。第一个测试 test_run 用来测试程序是否成功运行并返回 0 值。剩下的三个测试分别用来测试 5 的 平方、10 的 5 次方、2 的 10 次方是否都能得到正确的结果。其中 PASS_REGULAR_EXPRESSION 用来测试输出是否包含后面跟着的字符串。