支持向量机

来源:互联网 发布:免费查询大数据征信 编辑:程序博客网 时间:2024/05/22 08:19

优缺点

优点:泛化错误率低,计算开销不大,结果易解释。
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。

我们希望找到离分隔超平面最近的点,确保它们离分隔面的距离尽可能远。
支持向量(support vector)就是离分隔超平面最近的那些点。

类别标签为什么采用-1和+1,而不是0和1呢?
这是由于-1和+1仅仅相差一个符号,方便数学上的处理。我们可以通过一个统一公式来表示间隔或者数据点到分隔超平面的距离,同时不必担心数据到底是属于-1还是+1类。
当计算数据点到分隔面的距离并确定分隔面的放置位置时,间隔通过label(wTx+b)来计算,这时就能体现出-1和+1类的好处了。如果数据点处于正方向(即+1类)并且离分隔超平面很远的位置时,wTx+b会是一个很大的正数,同时label(wTx+b)也会是一个很大的正数。而如果数据点处于负方向(-1类)并且离分隔超平面很远的位置时,此时由于类别标签为-1,则label(wTx+b)仍然是一个很大的正数。
现在的目标就是找出分类器定义中的 w 和 b 。为此,我们必须找到具有最小间隔的数据点,而这些数据点也就是前面提到的支持向量。一旦找到具有最小间隔的数据点,我们就需要对该间隔最大化。这就可以写作:
argmaxw,b{minn(label(wTx+b))1||w||}
直接求解上述问题相当困难,所以我们将它转换成为另一种更容易求解的形式。首先考察一下上式中大括号内的部分。由于对乘积进行优化是一件很讨厌的事情,因此我们要做的是固定其中一个因子而最大化其他因子。如果令所有支持向量的label(wTx+b)都为1,那么就可以通过求||w||1 的最大值来得到最终解。但是,并非所有数据点的 label*(w x+b) 都等于1,只有那些离分隔超平面最近的点得到的值才为1。而离超平面越远的数据点,其label(wTx+b)的值也就越大。
在上述优化问题中,给定了一些约束条件然后求最优值,因此该问题是一个带约束条件的优化问题。这里的约束条件就是label(wTx+b)1.0。对于这类优化问题,有一个非常著名的求解方法,即拉格朗日乘子法。通过引入拉格朗日乘子,我们就可以基于约束条件来表述原来的问题。由于这里的约束条件都是基于数据点的,因此我们就可以将超平面写成数据点的形式。于是,优化目标函数最后可以写成:
maxa[mi=1a12mi,j=1labeljaiaj<x(i),x(j)>]
s.t.a0,mi=1ailabel(i)=0
至此,一切都很完美,但是这里有个假设:数据必须100%线性可分。目前为止,我们知道几乎所有数据都不那么“干净”。这时我们就可以通过引入所谓松弛变量(slack variable),来允许有些数据点可以处于分隔面的错误一侧。这样我们的优化目标就能保持仍然不变,但是此时新的约束条件则变为:
s.t.Ca0,mi=1ailabel(i)=0
这里的常数 C 用于控制“最大化间隔”和“保证大部分点的函数间隔小于1.0”这两个目标的权重。在优化算法的实现代码中,常数 C 是一个参数,因此我们就可以通过调节该参数得到不同的结果。一旦求出了所有的alpha,那么分隔超平面就可以通过这些alpha来表达。这一结论十分直接,SVM中的主要工作就是求解这些alpha。

SMO 高效优化算法

接下来,我们上述的最后两个式子进行优化,其中一个是最小化的目标函数,一个是在优化过程中必须遵循的约束条件。不久之前,人们还在使用二次规划求解工具(quadratic solver)来求解上述最优化问题,这种工具是一种用于在线性约束下优化具有多个变量的二次目标函数的软件。而这些二次规划求解工具则需要强大的计算能力支撑,另外在实现上也十分复杂。所有需要做的围绕优化的事情就是训练分类器,一旦得到alpha的最优值,我们就得到了分隔超平面(2维平面中就是直线)并能够将之用于数据分类。
下面我们就开始讨论SMO算法,然后给出一个简化的版本,以便读者能够正确理解它的工作流程。后一节将会给出SMO算法的完整版,它比简化版的运行速度要快很多。

Platt 的 SMO 算法

1996年,John Platt发布了一个称为SMO的强大算法,用于训练SVM。SMO表示序列最小优化(Sequential Minimal Optimization)。Platt的SMO算法是将大优化问题分解为多个小优化问题来求解的。这些小优化问题往往很容易求解,并且对它们进行顺序求解的结果与将它们作为整体来求解的结果是完全一致的。在结果完全相同的同时,SMO算法的求解时间短很多。
SMO算法的目标是求出一系列alpha和 b ,一旦求出了这些alpha,就很容易计算出权重向量w并得到分隔超平面。
SMO算法的工作原理是:每次循环中选择两个alpha进行优化处理。一旦找到一对合适的alpha,那么就增大其中一个同时减小另一个。这里所谓的“合适”就是指两个alpha必须要符合一定的条件,条件之一就是这两个alpha必须要在间隔边界之外,而其第二个条件则是这两个alpha还没有进行过区间化处理或者不在边界上。

应用简化版 SMO 算法处理小规模数据集

Platt SMO算法的完整实现需要大量代码。在接下来的第一个例子中,我们将会对算法进行简化处理,以便了解算法的基本工作思路,之后再基于简化版给出完整版。简化版代码虽然量少但执行速度慢。Platt SMO算法中的外循环确定要优化的最佳alpha对。而简化版却会跳过这一部分,首先在数据集上遍历每一个alpha,然后在剩下的alpha集合中随机选择另一个alpha,从而构建alpha对。这里有一点相当重要,就是我们要同时改变两个alpha。之所以这样做是因为我们有一个约束条件:

ailabeli=0

由于改变一个alpha可能会导致该约束条件失效,因此我们总是同时改变两个alpha。
为此,我们将构建一个辅助函数,用于在某个区间范围内随机选择一个整数。同时,我们也需要另一个辅助函数,用于在数值太大时对其进行调整。

利用完整 Platt SMO 算法加速优化

在几百个点组成的小规模数据集上,简化版SMO算法的运行是没有什么问题的,但是在更大的数据集上的运行速度就会变慢。刚才已经讨论了简化版SMO算法,下面我们就讨论完整版的Platt SMO算法。在这两个版本中,实现alpha的更改和代数运算的优化环节一模一样。在优化过程中,唯一的不同就是选择alpha的方式。完整版的Platt SMO算法应用了一些能够提速的启发方法。
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替:一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描。而所谓非边界alpha指的就是那些不等于边界0或C的alpha值。对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历。同时,该步骤会跳过那些已知的不会改变的alpha值。
在选择第一个alpha值后,算法会通过一个内循环来选择第二个alpha值。在优化过程中,会通过最大化步长的方式来获得第二个alpha值。在简化版SMO算法中,我们会在选择 j 之后计算错误率 Ej 。但在这里,我们会建立一个全局的缓存用于保存误差值,并从中选择使得步长或者说
Ei-Ej 最大的alpha值。

利用核函数将数据映射到高维空间

将数据从一个特征空间转换到另一个特征空间。在新空间下,我们可以很容易利用已有的工具对数据进行处理。数学家们喜欢将这个过程称之为从一个特征空间到另一个特征空间的映射。在通常情况下,这种映射会将低维特征空间映射到高维空间。
这种从某个特征空间到另一个特征空间的映射是通过核函数来实现的。读者可以把核函数想象成一个包装器(wrapper)或者是接口(interface),它能把数据从某个很难处理的形式转换成为另一个较容易处理的形式。如果上述特征空间映射的说法听起来很让人迷糊的话,那么可以将它想象成为另外一种距离计算的方法。前面我们提到过距离计算的方法。距离计算的方法有很多种,不久我们也将看到,核函数一样具有多种类型。经过空间转换之后,我们可以在高维空间中解决线性问题,这也就等价于在低维空间中解决非线性问题。
SVM优化中一个特别好的地方就是,所有的运算都可以写成内积(inner product,也称点积)的形式。向量的内积指的是两个向量相乘,之后得到单个标量或者数值。我们可以把内积运算替换成核函数,而不必做简化处理。将内积替换成核函数的方式被称为核技巧(kernel trick)或者核“变电”(kernel substation)。

径向基核函数

径向基函数是SVM中常用的一个核函数。径向基函数是一个采用向量作为自变量的函数,能够基于向量距离运算输出一个标量。这个距离可以是从<0,0>向量或者其他向量开始计算的距离。
接下来,我们将会使用到径向基函数的高斯版本,其具体公式为:

k(x,y)=exp(||xy||22σ2)

其中,  是用户定义的用于确定到达率( reach )或者说函数值跌落到 0 的速度参数。
上述高斯核函数将数据从其特征空间映射到更高维的空间,具体来说这里是映射到一个无穷维的空间。关于无穷维空间,读者目前不需要太担心。高斯核函数只是一个常用的核函数,使用者并不需要确切地理解数据到底是如何表现的,而且使用高斯核函数还会得到一个理想的结果。
在上面的例子中,数据点基本上都在一个圆内。对于这个例子,我们可以直接检查原始数据,并意识到只要度量数据点到圆心的距离即可。然而,如果碰到了一个不是这种形式的新数据集,那么我们就会陷入困境。在该数据集上,使用高斯核函数可以得到很好的结果。当然,该函数也可以用于许多其他的数据集,并且也能得到低错误率的结果。

小结

支持向量机是一种分类器。之所以称为“机”是因为它会产生一个二值决策结果,即它是一种决策“机”。支持向量机的泛化错误率较低,也就是说它具有良好的学习能力,且学到的结果具有很好的推广性。这些优点使得支持向量机十分流行,有些人认为它是监督学习中最好的定式算法。
支持向量机试图通过求解一个二次优化问题来最大化分类间隔。在过去,训练支持向量机常采用非常复杂并且低效的二次规划求解方法。 John Platt 引入了 SMO 算法,此算法可以通过每次只优化 2 个 alpha 值来加快 SVM 的训练速度。本章首先讨论了一个简化版本所实现的 SMO 优化过程,接着给出了完整的 Platt SMO 算法。相对于简化版而言,完整版算法不仅大大地提高了优化的速
度,还使其存在一些进一步提高运行速度的空间。有关这方面的工作,一个经常被引用的参考文献就是“ Improvements to Platt’s SMO Algorithm for SVM Classifier Design ” 。
核方法或者说核技巧会将数据(有时是非线性数据)从一个低维空间映射到一个高维空间,可以将一个在低维空间中的非线性问题转换成高维空间下的线性问题来求解。
核方法不止在 SVM中适用,还可以用于其他算法中。而其中的径向基函数是一个常用的度量两个向量距离的核函数。
支持向量机是一个二类分类器。当用其解决多类问题时,则需要额外的方法对其进行扩展。SVM 的效果也对优化参数和所用核函数中的参数敏感。

原创粉丝点击