图像处理之霍夫变换(直线检测算法)

来源:互联网 发布:北伊利诺伊大学 知乎 编辑:程序博客网 时间:2024/05/16 23:35

- created by gloomyfish

图像处理之霍夫变换(直线检测算法)

霍夫变换是图像变换中的经典手段之一,主要用来从图像中分离出具有某种相同特征的几何

形状(如,直线,圆等)。霍夫变换寻找直线与圆的方法相比与其它方法可以更好的减少噪

声干扰。经典的霍夫变换常用来检测直线,圆,椭圆等。

 

霍夫变换算法思想:

以直线检测为例,每个像素坐标点经过变换都变成都直线特质有贡献的统一度量,一个简单

的例子如下:一条直线在图像中是一系列离散点的集合,通过一个直线的离散极坐标公式,

可以表达出直线的离散点几何等式如下:

X *cos(theta) + y * sin(theta)  = r 其中角度theta指r与X轴之间的夹角,r为到直线几何垂

直距离。任何在直线上点,x, y都可以表达,其中 r, theta是常量。该公式图形表示如下:

然而在实现的图像处理领域,图像的像素坐标P(x, y)是已知的,而r, theta则是我们要寻找

的变量。如果我们能绘制每个(r, theta)值根据像素点坐标P(x, y)值的话,那么就从图像笛卡

尔坐标系统转换到极坐标霍夫空间系统,这种从点到曲线的变换称为直线的霍夫变换。变换

通过量化霍夫参数空间为有限个值间隔等分或者累加格子。当霍夫变换算法开始,每个像素

坐标点P(x, y)被转换到(r, theta)的曲线点上面,累加到对应的格子数据点,当一个波峰出现

时候,说明有直线存在。同样的原理,我们可以用来检测圆,只是对于圆的参数方程变为如

下等式:

(x –a ) ^2 + (y-b) ^ 2 = r^2其中(a, b)为圆的中心点坐标,r圆的半径。这样霍夫的参数空间就

变成一个三维参数空间。给定圆半径转为二维霍夫参数空间,变换相对简单,也比较常用。

 

编程思路解析:

1.      读取一幅带处理二值图像,最好背景为黑色。

2.      取得源像素数据

3.      根据直线的霍夫变换公式完成霍夫变换,预览霍夫空间结果

4.       寻找最大霍夫值,设置阈值,反变换到图像RGB值空间(程序难点之一)

5.      越界处理,显示霍夫变换处理以后的图像

 

关键代码解析:

直线的变换角度为[0 ~ PI]之间,设置等份为500为PI/500,同时根据参数直线参数方程的取值

范围为[-r, r]有如下霍夫参数定义:


// prepare for hough transform  int centerX = width / 2;  int centerY = height / 2;  double hough_interval = PI_VALUE/(double)hough_space;        int max = Math.max(width, height);  int max_length = (int)(Math.sqrt(2.0D) * max);  hough_1d = new int[2 * hough_space * max_length]; 

实现从像素RGB空间到霍夫空间变换的代码为:

// start hough transform now....  int[][] image_2d = convert1Dto2D(inPixels);  for (int row = 0; row < height; row++) {      for (int col = 0; col < width; col++) {          int p = image_2d[row][col] & 0xff;          if(p == 0) continue; // which means background color                    // since we does not know the theta angle and r value,           // we have to calculate all hough space for each pixel point          // then we got the max possible theta and r pair.          // r = x * cos(theta) + y * sin(theta)          for(int cell=0; cell < hough_space; cell++ ) {              max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));              max += max_length; // start from zero, not (-max_length)              if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]                  continue;              }              hough_2d[cell][max] +=1;          }      }  }  

寻找最大霍夫值计算霍夫阈值的代码如下:

// find the max hough value  int max_hough = 0;  for(int i=0; i<hough_space; i++) {      for(int j=0; j<2*max_length; j++) {          hough_1d[(i + j * hough_space)] = hough_2d[i][j];          if(hough_2d[i][j] > max_hough) {              max_hough = hough_2d[i][j];          }      }  }  System.out.println("MAX HOUGH VALUE = " + max_hough);    // transfer back to image pixels space from hough parameter space  int hough_threshold = (int)(threshold * max_hough);  

从霍夫空间反变换回像素数据空间代码如下:

// transfer back to image pixels space from hough parameter space  int hough_threshold = (int)(threshold * max_hough);  for(int row = 0; row < hough_space; row++) {      for(int col = 0; col < 2*max_length; col++) {          if(hough_2d[row][col] < hough_threshold) // discard it              continue;          int hough_value = hough_2d[row][col];          boolean isLine = true;          for(int i=-1; i<2; i++) {              for(int j=-1; j<2; j++) {                  if(i != 0 || j != 0) {                    int yf = row + i;                    int xf = col + j;                    if(xf < 0) continue;                    if(xf < 2*max_length) {                        if (yf < 0) {                            yf += hough_space;                        }                        if (yf >= hough_space) {                            yf -= hough_space;                        }                        if(hough_2d[yf][xf] <= hough_value) {                            continue;                        }                        isLine = false;                        break;                    }                  }              }          }          if(!isLine) continue;                    // transform back to pixel data now...          double dy = Math.sin(row * hough_interval);          double dx = Math.cos(row * hough_interval);          if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {              for (int subrow = 0; subrow < height; ++subrow) {                int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;                if ((subcol < width) && (subcol >= 0)) {                    image_2d[subrow][subcol] = -16776961;                }              }            } else {              for (int subcol = 0; subcol < width; ++subcol) {                int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;                if ((subrow < height) && (subrow >= 0)) {                    image_2d[subrow][subcol] = -16776961;                }              }            }      }  }  

霍夫变换源图如下:

霍夫变换以后,在霍夫空间显示如下:(白色表示已经找到直线信号)


最终反变换回到像素空间效果如下:


一个更好的运行监测直线的结果(输入为二值图像):


完整的霍夫变换源代码如下:

package com.gloomyfish.image.transform;    import java.awt.image.BufferedImage;    import com.process.blur.study.AbstractBufferedImageOp;    public class HoughLineFilter extends AbstractBufferedImageOp {      public final static double PI_VALUE = Math.PI;      private int hough_space = 500;      private int[] hough_1d;      private int[][] hough_2d;      private int width;      private int height;            private float threshold;      private float scale;      private float offset;            public HoughLineFilter() {          // default hough transform parameters          //  scale = 1.0f;          //  offset = 0.0f;          threshold = 0.5f;          scale = 1.0f;          offset = 0.0f;      }            public void setHoughSpace(int space) {          this.hough_space = space;      }            public float getThreshold() {          return threshold;      }        public void setThreshold(float threshold) {          this.threshold = threshold;      }        public float getScale() {          return scale;      }        public void setScale(float scale) {          this.scale = scale;      }        public float getOffset() {          return offset;      }        public void setOffset(float offset) {          this.offset = offset;      }        @Override      public BufferedImage filter(BufferedImage src, BufferedImage dest) {          width = src.getWidth();          height = src.getHeight();            if ( dest == null )              dest = createCompatibleDestImage( src, null );            int[] inPixels = new int[width*height];          int[] outPixels = new int[width*height];          getRGB( src, 0, 0, width, height, inPixels );          houghTransform(inPixels, outPixels);          setRGB( dest, 0, 0, width, height, outPixels );          return dest;      }        private void houghTransform(int[] inPixels, int[] outPixels) {          // prepare for hough transform          int centerX = width / 2;          int centerY = height / 2;          double hough_interval = PI_VALUE/(double)hough_space;                    int max = Math.max(width, height);          int max_length = (int)(Math.sqrt(2.0D) * max);          hough_1d = new int[2 * hough_space * max_length];                    // define temp hough 2D array and initialize the hough 2D          hough_2d = new int[hough_space][2*max_length];          for(int i=0; i<hough_space; i++) {              for(int j=0; j<2*max_length; j++) {                  hough_2d[i][j] = 0;              }          }                    // start hough transform now....          int[][] image_2d = convert1Dto2D(inPixels);          for (int row = 0; row < height; row++) {              for (int col = 0; col < width; col++) {                  int p = image_2d[row][col] & 0xff;                  if(p == 0) continue; // which means background color                                    // since we does not know the theta angle and r value,                   // we have to calculate all hough space for each pixel point                  // then we got the max possible theta and r pair.                  // r = x * cos(theta) + y * sin(theta)                  for(int cell=0; cell < hough_space; cell++ ) {                      max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));                      max += max_length; // start from zero, not (-max_length)                      if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]                          continue;                      }                      hough_2d[cell][max] +=1;                  }              }          }                    // find the max hough value          int max_hough = 0;          for(int i=0; i<hough_space; i++) {              for(int j=0; j<2*max_length; j++) {                  hough_1d[(i + j * hough_space)] = hough_2d[i][j];                  if(hough_2d[i][j] > max_hough) {                      max_hough = hough_2d[i][j];                  }              }          }          System.out.println("MAX HOUGH VALUE = " + max_hough);                    // transfer back to image pixels space from hough parameter space          int hough_threshold = (int)(threshold * max_hough);          for(int row = 0; row < hough_space; row++) {              for(int col = 0; col < 2*max_length; col++) {                  if(hough_2d[row][col] < hough_threshold) // discard it                      continue;                  int hough_value = hough_2d[row][col];                  boolean isLine = true;                  for(int i=-1; i<2; i++) {                      for(int j=-1; j<2; j++) {                          if(i != 0 || j != 0) {                            int yf = row + i;                            int xf = col + j;                            if(xf < 0) continue;                            if(xf < 2*max_length) {                                if (yf < 0) {                                    yf += hough_space;                                }                                if (yf >= hough_space) {                                    yf -= hough_space;                                }                                if(hough_2d[yf][xf] <= hough_value) {                                    continue;                                }                                isLine = false;                                break;                            }                          }                      }                  }                  if(!isLine) continue;                                    // transform back to pixel data now...                  double dy = Math.sin(row * hough_interval);                  double dx = Math.cos(row * hough_interval);                  if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {                      for (int subrow = 0; subrow < height; ++subrow) {                        int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;                        if ((subcol < width) && (subcol >= 0)) {                            image_2d[subrow][subcol] = -16776961;                        }                      }                    } else {                      for (int subcol = 0; subcol < width; ++subcol) {                        int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;                        if ((subrow < height) && (subrow >= 0)) {                            image_2d[subrow][subcol] = -16776961;                        }                      }                    }              }          }                    // convert to hough 1D and return result          for (int i = 0; i < this.hough_1d.length; i++)          {            int value = clamp((int)(scale * this.hough_1d[i] + offset)); // scale always equals 1            this.hough_1d[i] = (0xFF000000 | value + (value << 16) + (value << 8));          }                    // convert to image 1D and return          for (int row = 0; row < height; row++) {              for (int col = 0; col < width; col++) {                  outPixels[(col + row * width)] = image_2d[row][col];              }          }      }            public BufferedImage getHoughImage() {          BufferedImage houghImage = new BufferedImage(hough_2d[0].length, hough_space, BufferedImage.TYPE_4BYTE_ABGR);          setRGB(houghImage, 0, 0, hough_2d[0].length, hough_space, hough_1d);          return houghImage;      }            public static int clamp(int value) {            if (value < 0)                value = 0;            else if (value > 255) {                value = 255;            }            return value;      }            private int[][] convert1Dto2D(int[] pixels) {          int[][] image_2d = new int[height][width];          int index = 0;          for(int row = 0; row < height; row++) {              for(int col = 0; col < width; col++) {                  index = row * width + col;                  image_2d[row][col] = pixels[index];              }          }          return image_2d;      }    }