C语言指针相关知识理解以及总结

来源:互联网 发布:windows优化大师电脑版 编辑:程序博客网 时间:2024/06/05 18:55

什么是指针

计算机中所有的数据都必须放在内存中,不同类型的数据占用的字节数不一样,例如 int 占用4个字节,char 占用1个字节。为了正确地访问这些数据,必须为每个字节都编上号码,就像门牌号、身份证号一样,每个字节的编号是唯一的,根据编号可以准确地找到某个字节。


我们将内存中字节的编号称为地址(Address)或指针(Pointer)。地址从 0 开始依次增加,对于 32 位环境,程序能够使用的内存为 4GB,最小的地址为 0,最大的地址为 0XFFFFFFFF。
 
#include <stdio.h>
int main()
{
    int a = 100;
    char str[20] = "hello";
    printf("%#X, %#X\n", &a, str);
    return 0;

运行结果:
0X28FF3C, 0X28FF10
%#X表示以十六进制形式输出,并附带前缀0X。a 是一个变量,用来存放整数,需要在前面加&来获得它的地址;str 本身就表示字符串的首地址,不需要加&。


一切都是地址

C语言用变量来存储数据,用函数来定义一段可以重复使用的代码,它们最终都要放到内存中才能供 CPU 使用。
 
数据和代码都以二进制的形式存储在内存中,计算机无法从格式上区分某块内存到底存储的是数据还是代码。当程序被加载到内存后,操作系统会给不同的内存块指定不同的权限,拥有读取和执行权限的内存块就是代码,而拥有读取和写入权限(也可能只有读取权限)的内存块就是数据。
 
CPU 只能通过地址来取得内存中的代码和数据,程序在执行过程中会告知 CPU 要执行的代码以及要读写的数据的地址。如果程序不小心出错,或者开发者有意为之,在 CPU 要写入数据时给它一个代码区域的地址,就会发生内存访问错误。这种内存访问错误会被硬件和操作系统拦截,强制程序崩溃,程序员没有挽救的机会。
 
CPU 访问内存时需要的是地址,而不是变量名和函数名!变量名和函数名只是地址的一种助记符,当源文件被编译和链接成可执行程序后,它们都会被替换成地址。编译和链接过程的一项重要任务就是找到这些名称所对应的地址。
假设变量 a、b、c 在内存中的地址分别是 0X1000、0X2000、0X3000,那么加法运算c = a + b;将会被转换成类似下面的形式:
 0X3000 = (0X1000) + (0X2000);
( )表示取值操作,整个表达式的意思是,取出地址 0X1000 和 0X2000 上的值,将它们相加,把相加的结果赋值给地址为 0X3000 的内存
 
变量名和函数名为我们提供了方便,让我们在编写代码的过程中可以使用易于阅读和理解的英文字符串,不用直接面对二进制地址,那场景简直让人崩溃。
 
需要注意的是,虽然变量名、函数名、字符串名和数组名在本质上是一样的,它们都是地址的助记符,但在编写代码的过程中,我们认为变量名表示的是数据本身,而函数名、字符串名和数组名表示的是代码块或数据块的首地址。

C语言指针

数据在内存中的地址也称为指针,如果一个变量存储了一份数据的指针,我们就称它为指针变量。
在C语言中,允许用一个变量来存放指针,这种变量称为指针变量。指针变量的值就是某份数据的地址,这样的一份数据可以是数组、字符串、函数,也可以是另外的一个普通变量或指针变量。
现在假设有一个 char 类型的变量 c,它存储了字符 'K'(ASCII码为十进制数 75),并占用了地址为 0X11A 的内存(地址通常用十六进制表示)。另外有一个指针变量 p,它的值为 0X11A,正好等于变量 c 的地址,这种情况我们就称 p 指向了 c,或者说 p 是指向变量 c 的指针。



定义指针变量

定义指针变量与定义普通变量非常类似,不过要在变量名前面加星号*,格式为:
数据类型 * 变量名;       
数据类型 * 变量名 = 值 ;
*表示这是一个指针变量,数据类型表示该指针变量所指向的数据的类型 。例如:
int *p1;
p1 是一个指向 int 类型数据的指针变量,至于 p1 究竟指向哪一份数据,应该由赋予它的值决定。再如:
int a = 100;
int *p_a = &a;
在定义指针变量 p_a 的同时对它进行初始化,并将变量 a 的地址赋予它,此时 p_a 就指向了 a。值得注意的是,p_a 需要的是一个地址,a 前面必须要加取地址符&,否则是不对的。
 
和普通变量一样,指针变量也可以被多次写入,只要你想,随时都能够改变指针变量的值,请看下面的代码:
//定义普通变量
float a = 99.5, b = 10.6;
char c = '@', d = '#';
//定义指针变量
float *p1 = &a;
char *p2 = &c;
//修改指针变量的值
p1 = &b;
p2 = &d;
*是一个特殊符号,表明一个变量是指针变量,定义 p1、p2 时必须带*。而给 p1、p2 赋值时,因为已经知道了它是一个指针变量,就没必要多此一举再带上*,后边可以像使用普通变量一样来使用指针变量。也就是说,定义指针变量时必须带*,给指针变量赋值时不能带*。
假设变量 a、b、c、d 的地址分别为 0X1000、0X1004、0X2000、0X2004,下面的示意图很好地反映了 p1、p2 指向的变化:


 需要强调的是,p1、p2 的类型分别是float*和char*,而不是float和char,它们是完全不同的数据类型,要引起注意。



 指针变量存储了数据的地址,通过指针变量能够获得该地址上的数据,格式为:
*pointer;
这里的*称为指针运算符,用来取得某个地址上的数据,请看下面的例子:
#include <stdio.h>
int main()
{
    int a = 15;
    int *p = &a;
    printf("%d, %d\n", a, *p);  //两种方式都可以输出a的值
    return 0;
}
运行结果:
15, 15
*p 代表的是 a 中的数据,它等价于 a,可以将另外的一份数据赋值给它,也可以将它赋值给另外的一个变量。
*在不同的场景下有不同的作用:*可以用在指针变量的定义中,表明这是一个指针变量,以和普通变量区分开;使用指针变量时在前面加*表示获取指针指向的数据,或者说表示的是指针指向的数据本身。
也就是说,定义指针变量时的*和使用指针变量时的*意义完全不同。以下面的语句为例:
int *p = &a;
*p = 100;
第1行代码中*用来指明 p 是一个指针变量,第2行代码中*用来获取指针指向的数据。
需要注意的是,给指针变量本身赋值时不能加*。修改上面的语句:
int *p;
p = &a;
*p = 100;
第2行代码中的 p 前面就不能加*。
 
指针变量也可以出现在普通变量能出现的任何表达式中,例如:
int x = 10;
int y = 20;
int *px = &x;
int *py = &y;
y = *px + 5;   //表示把x的内容加5并赋给y,*px+5相当于(*px)+5
y = ++*px;    //px的内容加上1之后赋给y,++*px相当于++(*px)
y = *px++;    //相当于y=*(px++)
py = px;        //把一个指针的值赋给另一个指针


通过指针交换两个变量的值。
#include <stdio.h>
 int main()
{
    int a = 100, b = 999, temp;
    int *pa = &a, *pb = &b;
    printf("a=%d, b=%d\n", a, b);
    /*****开始交换*****/
    temp = *pa;     // 将a的值先保存起来
    *pa = *pb;      // 将b的值交给a
    *pb = temp;    //  再将保存起来的a的值交给b
    /*****结束交换*****/
    printf("a=%d, b=%d\n", a, b);
    return 0;
}
 运行结果:
a=100, b=999
a=999, b=100
从运行结果可以看出,a、b 的值已经发生了交换。需要注意的是临时变量 temp,它的作用特别重要,因为执行*pa = *pb;语句后 a 的值会被 b 的值覆盖,如果不先将 a 的值保存起来以后就找不到了。

关于*和&

假设有一个 int 类型的变量 a,pa 是指向它的指针,那么*&a和&*pa分别是什么意思呢?
 
*&a可以理解为*(&a),&a表示取变量 a 的地址(等价于 pa),*(&a)表示取这个地址上的数据(等价于 *pa),绕来绕去,又回到了原点,*&a仍然等价于 a。
 
&*pa可以理解为&(*pa),*pa表示取得 pa 指向的数据(等价于 a),&(*pa)表示数据的地址(等价于 &a),所以&*pa等价于 pa。


*总结

假设有一个 int 类型的变量 a,pa 是指向它的指针,那么*&a和&*pa分别是什么意思呢?
 
*&a可以理解为*(&a),&a表示取变量 a 的地址(等价于 pa),*(&a)表示取这个地址上的数据(等价于 *pa),绕来绕去,又回到了原点,*&a仍然等价于 a。
 
&*pa可以理解为&(*pa),*pa表示取得 pa 指向的数据(等价于 a),&(*pa)表示数据的地址(等价于 &a),所以&*pa等价于 pa。

指针变量运算


指针变量保存的是地址,本质上是一个整数,可以进行部分运算,例如加法、减法、比较等,请看下面的代码:
#include <stdio.h>
int main()
{
    int    a = 10,   *pa = &a, *paa = &a;
    double b = 99.9, *pb = &b;
    char   c = '@',  *pc = &c;
    //最初的值
    printf("&a=%#X, &b=%#X, &c=%#X\n", &a, &b, &c);
    printf("pa=%#X, pb=%#X, pc=%#X\n", pa, pb, pc);
    //加法运算
    pa++; pb++; pc++;
    printf("pa=%#X, pb=%#X, pc=%#X\n", pa, pb, pc);
    //减法运算
    pa -= 2; pb -= 2; pc -= 2;
    printf("pa=%#X, pb=%#X, pc=%#X\n", pa, pb, pc);
    //比较运算
    if(pa == paa){
        printf("%d\n", *paa);
    }else{
        printf("%d\n", *pa);
    }
    return 0;
}
 
运行结果:
&a=0X28FF44, &b=0X28FF30, &c=0X28FF2B
pa=0X28FF44, pb=0X28FF30, pc=0X28FF2B
pa=0X28FF48, pb=0X28FF38, pc=0X28FF2C
pa=0X28FF40, pb=0X28FF28, pc=0X28FF2A
2686784
 
从运算结果可以看出:pa、pb、pc 每次加 1,它们的地址分别增加 4、8、1,正好是 int、double、char 类型的长度;减 2 时,地址分别减少 8、16、2,正好是 int、double、char 类型长度的 2 倍。
 
这很奇怪,指针变量加减运算的结果跟数据类型的长度有关,而不是简单地加 1 或减 1,这是为什么呢?
以 a 和 pa 为例,a 的类型为 int,占用 4 个字节,pa 是指向 a 的指针,如下图所示:
 
 刚开始的时候,pa 指向 a 的开头,通过 *pa 读取数据时,从 pa 指向的位置向后移动 4 个字节,把这 4 个字节的内容作为要获取的数据,这 4 个字节也正好是变量 a 占用的内存。
 
 这个时候 pa 指向整数 a 的中间,*pa 使用的是红色虚线画出的 4 个字节,其中前 3 个是变量 a 的,后面 1 个是其它数据的,把它们“搅和”在一起显然没有实际的意义,取得的数据也会非常怪异。
如果pa++;使得地址加 4 的话,正好能够完全跳过整数 a,指向它后面的内存,如下图所示:


 我们知道,数组中的所有元素在内存中是连续排列的,如果一个指针指向了数组中的某个元素,那么加 1 就表示指向下一个元素,减 1 就表示指向上一个元素,这样指针的加减运算就具有了现实的意义。
不过C语言并没有规定变量的存储方式,如果连续定义多个变量,它们有可能是挨着的,也有可能是分散的,这取决于变量的类型、编译器的实现以及具体的编译模式,所以对于指向普通变量的指针,我们往往不进行加减运算,虽然编译器并不会报错,但这样做没有意义,因为不知道它后面指向的是什么数据。
 
下面的例子是一个反面教材,警告不要尝试通过指针获取下一个变量的地址:
#include <stdio.h>
int main(){
    int a = 1, b = 2, c = 3;
    int *p = &c;
    int i;
    for(i=0; i<8; i++){
        printf("%d, ", *(p+i) );
    }
    return 0;
}
在 VS2010 Debug 模式下的运行结果为:
3, -858993460, -858993460, 2, -858993460, -858993460, 1, -858993460,
可以发现,变量 a、b、c 并不挨着,它们中间还参杂了别的辅助数据。
 指针变量除了可以参与加减运算,还可以参与比较运算。当对指针变量进行比较运算时,比较的是指针变量本身的值,也就是数据的地址。如果地址相等,那么两个指针就指向同一份数据,否则就指向不同的数据。
上面的代码(第一个例子)在比较 pa 和 paa 的值时,pa 已经指向了 a 的上一份数据,所以它们不相等。而 a 的上一份数据又不知道是什么,所以会导致 printf() 输出一个没有意义的数,这正好印证了上面的观点,不要对指向普通变量的指针进行加减运算。
另外需要说明的是,不能对指针变量进行乘法、除法、取余等其他运算,除了会发生语法错误,也没有实际的含义。

C语言数组指针
指向数组的指针

数组(Array)是一系列具有相同类型的数据的集合,每一份数据叫做一个数组元素(Element)。数组中的所有元素在内存中是连续排列的,整个数组占用的是一块内存。以int arr[] = { 99, 15, 100, 888, 252 };为例,该数组在内存中的分布如下图所示:


定义数组时,要给出数组名和数组长度,数组名可以认为是一个指针,它指向数组的第 0 个元素。在C语言中,我们将第 0 个元素的地址称为数组的首地址。以上面的数组为例,下图是 arr 的指向:


 数组名的本意是表示整个数组,也就是表示多份数据的集合,但在使用过程中经常会转换为指向数组第 0 个元素的指针,所以上面使用了“认为”一词,表示数组名和数组首地址并不总是等价。初学者可以暂时忽略这个细节,把数组名当做指向第 0 个元素的指针使用即可
下面的例子演示了如何以指针的方式遍历数组元素:
 #include <stdio.h>
int main()
{
    int arr[] = { 99, 15, 100, 888, 252 };
    int len = sizeof(arr) / sizeof(int);  //求数组长度
    int i;
    for(i=0; i<len; i++){
        printf("%d  ", *(arr+i) );  //*(arr+i)等价于arr[i]
    }
    printf("\n");
    return 0;
}
运行结果:
99  15  100  888  252
第 4 行代码用来求数组的长度,sizeof(arr) 会获得整个数组所占用的字节数,sizeof(int) 会获得一个数组元素所占用的字节数,它们相除的结果就是数组包含的元素个数,也即数组长度。
 
第 8 行代码中我们使用了*(arr+i)这个表达式,arr 是数组名,指向数组的第 0 个元素,表示数组首地址, arr+i 指向数组的第 i 个元素,*(arr+i) 表示取第 i 个元素的数据,它等价于 arr[i]。
 
arr 是int*类型的指针,每次加 1 时它自身的值会增加 sizeof(int),加 i 时自身的值会增加 sizeof(int) * i,这在 指针变量的运算 中已经进行了详细讲解。
 
我们也可以定义一个指向数组的指针,例如:
 int arr[] = { 99, 15, 100, 888, 252 };
int *p = arr;
arr 本身就是一个指针,可以直接赋值给指针变量 p。arr 是数组第 0 个元素的地址,所以int *p = arr;也可以写作int *p = &arr[0];。也就是说,arr、p、&arr[0] 这三种写法都是等价的,它们都指向数组第 0 个元素,或者说指向数组的开头。
再强调一遍,“arr 本身就是一个指针”这种表述并不准确,严格来说应该是“arr 被转换成了一个指针”。这里请大家先忽略这个细节
 
如果一个指针指向了数组,我们就称它为数组指针(Array Pointer)。
数组指针指向的是数组中的一个具体元素,而不是整个数组,所以数组指针的类型和数组元素的类型有关,上面的例子中,p 指向的数组元素是 int 类型,所以 p 的类型必须也是int *。
反过来想,p 并不知道它指向的是一个数组,p 只知道它指向的是一个整数,究竟如何使用 p 取决于程序员的编码。
更改上面的代码,使用数组指针来遍历数组元素:
 #include <stdio.h>
int main(){
    int arr[] = { 99, 15, 100, 888, 252 };
    int i, *p = arr, len = sizeof(arr) / sizeof(int);
 
    for(i=0; i<len; i++){
        printf("%d  ", *(p+i) );
    }
    printf("\n");
    return 0;
}
数组在内存中只是数组元素的简单排列,没有开始和结束标志,在求数组的长度时不能使用sizeof(p) / sizeof(int),因为 p 只是一个指向 int 类型的指针,编译器并不知道它指向的到底是一个整数还是一系列整数(数组),所以 sizeof(p) 求得的是 p 这个指针变量本身所占用的字节数,而不是整个数组占用的字节数。
 也就是说,根据数组指针不能逆推出整个数组元素的个数,以及数组从哪里开始、到哪里结束等信息。不像字符串,数组本身也没有特定的结束标志,如果不知道数组的长度,那么就无法遍历整个数组。
 
上节我们讲到,对指针变量进行加法和减法运算时,是根据数据类型的长度来计算的。如果一个指针变量 p 指向了数组的开头,那么 p+i 就指向数组的第 i 个元素;如果 p 指向了数组的第 n 个元素,那么 p+i 就是指向第 n+i 个元素;而不管 p 指向了数组的第几个元素,p+1 总是指向下一个元素,p-1 也总是指向上一个元素。
 
 更改上面的代码,让 p 指向数组中的第二个元素:
 #include <stdio.h>
int main(){
    int arr[] = { 99, 15, 100, 888, 252 };
    int *p = &arr[2];  //也可以写作 int *p = arr + 2;
 
    printf("%d, %d, %d, %d, %d\n", *(p-2), *(p-1), *p, *(p+1), *(p+2) );
    return 0;
}
运行结果:
99, 15, 100, 888, 252
 
引入数组指针后,我们就有两种方案来访问数组元素了,一种是使用下标,另外一种是使用指针。
1) 使用下标
也就是采用 arr[i] 的形式访问数组元素。如果 p 是指向数组 arr 的指针,那么也可以使用 p[i] 来访问数组元素,它等价于 arr[i]。
2) 使用指针
也就是使用 *(p+i) 的形式访问数组元素。另外数组名本身也是指针,也可以使用 *(arr+i) 来访问数组元素,它等价于 *(p+i)。
 
不管是数组名还是数组指针,都可以使用上面的两种方式来访问数组元素。不同的是,数组名是常量,它的值不能改变,而数组指针是变量(除非特别指明它是常量),它的值可以任意改变。也就是说,数组名只能指向数组的开头,而数组指针可以先指向数组开头,再指向其他元素。
 
更改上面的代码,借助自增运算符来遍历数组元素:
 #include <stdio.h>
int main(){
    int arr[] = { 99, 15, 100, 888, 252 };
    int i, *p = arr, len = sizeof(arr) / sizeof(int);
 
    for(i=0; i<len; i++){
        printf("%d  ", *(p++) );
    }
    printf("\n");
    return 0;
}
 
运行结果:
99  15  100  888  252
第 8 行代码中,*p++ 应该理解为 *(p++),每次循环都会改变 p 的值(p++ 使得 p 自身的值增加),以使 p 指向下一个数组元素。该语句不能写为 *arr++,因为 arr 是常量,而 arr++ 会改变它的值,这显然是错误的。

假设 p 是指向数组 arr 中第 n 个元素的指针,那么 *p++、*++p、(*p)++ 分别是什么意思呢?
 
*p++ 等价于 *(p++),表示先取得第 n 个元素的值,再将 p 指向下一个元素,上面已经进行了详细讲解。
 
*++p 等价于 *(++p),会先进行 ++p 运算,使得 p 的值增加,指向下一个元素,整体上相当于 *(p+1),所以会获得第 n+1 个数组元素的值。
 
(*p)++ 就非常简单了,会先取得第 n 个元素的值,再对该元素的值加 1。假设 p 指向第 0  个元素,并且第 0 个元素的值为 99,执行完该语句后,第 0  个元素的值就会变为 100。


字符串指针

C语言中没有特定的字符串类型,我们通常是将字符串放在一个字符数组中,这里再来演示一下:
#include <stdio.h>
#include <string.h>
int main(){
    char str[] = "hello";
    int len = strlen(str), i;
    //直接输出字符串
    printf("%s\n", str);
    //每次输出一个字符
    for(i=0; i<len; i++){
        printf("%c", str[i]);
    }
    printf("\n");
    return 0;

运行结果:
hello
hello
字符数组归根结底还是一个数组,上节讲到的关于指针和数组的规则同样也适用于字符数组。更改上面的代码,使用指针的方式来输出字符串:
#include <stdio.h>
int main(){
    char str[] = "hello";
    char *pstr = str;
    int len = strlen(str), i;
 
    //使用*(pstr+i)
    for(i=0; i<len; i++){
        printf("%c", *(pstr+i));
    }
    printf("\n");
    //使用pstr[i]
    for(i=0; i<len; i++){
        printf("%c", pstr[i]);
    }
    printf("\n");
    //使用*(str+i)
    for(i=0; i<len; i++){
        printf("%c", *(str+i));
    }
    printf("\n");
 
    return 0;
}
 运行结果:
hello
hello
hello
除了字符数组,C语言还支持另外一种表示字符串的方法,就是直接使用一个指针指向字符串,例如:
 char *str = "hello";
或者:
char *str;
str = "hello";
字符串中的所有字符在内存中是连续排列的,str 指向的是字符串的第 0 个字符;我们通常将第 0  个字符的地址称为字符串的首地址。字符串中每个字符的类型都是char,所以 str 的类型也必须是char *。
下面的例子演示了如何输出这种字符串:
 #include <stdio.h>
int main(){
    char *str = "hello";
    int len = strlen(str), i;
   
    //直接输出字符串
    printf("%s\n", str);
    //使用*(str+i)
    for(i=0; i<len; i++){
        printf("%c", *(str+i));
    }
    printf("\n");
    //使用str[i]
    for(i=0; i<len; i++){
        printf("%c", str[i]);
    }
    printf("\n");
 
    return 0;
}
运行结果:
hello
hello
hello
这一切看起来和字符数组是多么地相似,它们都可以使用%s输出整个字符串,都可以使用*或[ ]获取单个字符,这两种表示字符串的方式是不是就没有区别了呢?
有!它们最根本的区别是在内存中的存储区域不一样,字符数组存储在全局数据区或栈区,第二种形式的字符串存储在常量区。全局数据区和栈区的字符串(也包括其他数据)有读取和写入的权限,而常量区的字符串(也包括其他数据)只有读取权限,没有写入权限。
内存权限的不同导致的一个明显结果就是,字符数组在定义后可以读取和修改每个字符,而对于第二种形式的字符串,一旦被定义后就只能读取不能修改,任何对它的赋值都是错误的。
我们将第二种形式的字符串称为字符串常量,意思很明显,常量只能读取不能写入。请看下面的演示:
 #include <stdio.h>
int main(){
    char *str = "Hello World!";
    str = "I love C!";  //正确
    str[3] = 'P';  //错误
 
    return 0;
}
这段代码能够正常编译和链接,但在运行时会出现段错误(Segment Fault)或者写入位置错误。
第4行代码是正确的,可以更改指针变量本身的指向;第3行代码是错误的,不能修改字符串中的字符。
 
到底使用字符数组还是字符串常量
 在编程过程中如果只涉及到对字符串的读取,那么字符数组和字符串常量都能够满足要求;如果有写入(修改)操作,那么只能使用字符数组,不能使用字符串常量。
 
获取用户输入的字符串就是一个典型的写入操作,只能使用字符数组,不能使用字符串常量,请看下面的代码:
 #include <stdio.h>
int main(){
    char str[30];
    char * ptr;
    gets(ptr);   // 错误
    gets(str);
    printf("%s\n", str);
 
    return 0;
}
运行结果:
C C++ Java Python JavaScript
C C++ Java Python JavaScript
最后我们来总结一下,C语言有两种表示字符串的方法,一种是字符数组,另一种是字符串常量,它们在内存中的存储位置不同,使得字符数组可以读取和修改,而字符串常量只能读取不能修改。
 


二级指针

指针可以指向一份普通类型的数据,例如 int、double、char 等,也可以指向一份指针类型的数据,例如 int *、double *、char * 等。
如果一个指针指向的是另外一个指针,我们就称它为二级指针,或者指向指针的指针。
假设有一个 int 类型的变量 a,p1是指向 a 的指针变量,p2 又是指向 p1 的指针变量,它们的关系如下图所示:


将这种关系转换为C语言代码:
int a =100;
int *p1 = &a;
int **p2 = &p1;
指针变量也是一种变量,也会占用存储空间,也可以使用&获取它的地址。C语言不限制指针的级数,每增加一级指针,在定义指针变量时就得增加一个星号*。p1 是一级指针,指向普通类型的数据,定义时有一个*;p2 是二级指针,指向一级指针 p1,定义时有两个*。
 
如果我们希望再定义一个三级指针 p3,让它指向 p2,那么可以这样写:
int ***p3 = &p2;
四级指针也是类似的道理:
 int ****p4 = &p3;
实际开发中会经常使用一级指针和二级指针,几乎用不到高级指针。
想要获取指针指向的数据时,一级指针加一个*,二级指针加两个*,三级指针加三个*,以此类推,请看代码:
#include <stdio.h>
int main(){
    int a =100;
    int *p1 = &a;
    int **p2 = &p1;
    int ***p3 = &p2;
 
    printf("%d, %d, %d, %d\n", a, *p1, **p2, ***p3);
    printf("&p2 = %#X, p3 = %#X\n", &p2, p3);
    printf("&p1 = %#X, p2 = %#X, *p3 = %#X\n", &p1, p2, *p3);
    printf(" &a = %#X, p1 = %#X, *p2 = %#X, **p3 = %#X\n", &a, p1, *p2, **p3);
    return 0;
}
运行结果:
100, 100, 100, 100
&p2 = 0X28FF3C, p3 = 0X28FF3C
&p1 = 0X28FF40, p2 = 0X28FF40, *p3 = 0X28FF40
 &a = 0X28FF44, p1 = 0X28FF44, *p2 = 0X28FF44, **p3 = 0X28FF44
以三级指针 p3 为例来分析上面的代码。***p3等价于*(*(*p3))。*p3 得到的是 p2 的值,也即 p1 的地址;*(*p3) 得到的是 p1 的值,也即 a 的地址;经过三次“取值”操作后,*(*(*p3)) 得到的才是 a 的值。
假设 a、p1、p2、p3 的地址分别是 0X00A0、0X1000、0X2000、0X3000,它们之间的关系可以用下图来描述:


方框里面是变量本身的值,方框下面是变量的地址。
 

c语言指针数组

如果一个数组中的所有元素保存的都是指针,那么我们就称它为指针数组。指针数组的定义形式一般为:
 dataType *arrayName[length];
[ ]的优先级高于*,该定义形式应该理解为:
dataType *(arrayName[length]);
括号里面说明arrayName是一个数组,包含了length个元素,括号外面说明每个元素的类型为dataType *。
 
除了每个元素的数据类型不同,指针数组和普通数组在其他方面都是一样的,下面是一个简单的例子:
 #include <stdio.h>
int main(){
    int a = 16, b = 932, c = 100;
    //定义一个指针数组
    int *arr[3] = {&a, &b, &c};//也可以不指定长度,直接写作 int *arr[]
    //定义一个指向指针数组的指针
    int **parr = arr;
    printf("%d, %d, %d\n", *arr[0], *arr[1], *arr[2]);
    printf("%d, %d, %d\n", **(parr+0), **(parr+1), **(parr+2));
 
    return 0;
}
运行结果:
16, 932, 100
16, 932, 100
 
arr 是一个指针数组,它包含了 3 个元素,每个元素都是一个指针,在定义 arr 的同时,我们使用变量 a、b、c 的地址对它进行了初始化,这和普通数组是多么地类似。
 
parr 是指向数组 arr 的指针,确切地说是指向 arr 第 0 个元素的指针,它的定义形式应该理解为int *(*parr),括号中的*表示 parr 是一个指针,括号外面的int *表示 parr 指向的数据的类型。arr 第一个元素的类型为 int *,所以在定义 parr 时要加两个 *。
 
第一个 printf() 语句中,arr[i] 表示获取第 i 个元素的值,该元素是一个指针,还需要在前面增加一个 * 才能取得它指向的数据,也即 *arr[i] 的形式。
 
第二个 printf() 语句中,parr+i 表示第 i 个元素的地址,*(parr+i) 表示获取第 i 个元素的值(该元素是一个指针),**(parr+i) 表示获取第 i 个元素指向的数据。
 
指针数组还可以和字符串数组结合使用,请看下面的例子:
#include <stdio.h>
int main(){
    char *str[3] = {
        "helloworld!",   // 12
        "I love c",       // 9
        "C Language"  // 11
    };
    printf("%s\n%s\n%s\n", str[0], str[1], str[2]);
    return 0;
}
32
运行结果:
helloworld
I love c
C Language
 
需要注意的是,字符数组 str 中存放的是字符串的首地址,不是字符串本身,字符串本身位于其他的内存区域,和字符数组是分开的。
 
也只有当指针数组中每个元素的类型都是char *时,才能像上面那样给指针数组赋值,其他类型不行。
 
为了便于理解,可以将上面的字符串数组改成下面的形式,它们都是等价的。 
#include <stdio.h>
int main(){
    char *str0 = "c.biancheng.net";
    char *str1 = "I love c";
    char *str2 = "C Language";
    char *str[3] = {str0, str1, str2};
    printf("%s\n%s\n%s\n", str[0], str[1], str[2]);
    return 0;
}

 C语言与二维数组

二维数组在概念上是二维的,有行和列,但在内存中所有的数组元素都是连续排列的,它们之间没有“缝隙”。以下面的二维数组 a 为例:
 int a[3][4] = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11} };
从概念上理解,a 的分布像一个矩阵:
0   1   2   3
4   5   6   7
8   9  10  11
但在内存中,a 的分布是一维线性的,整个数组占用一块连续的内存:


C语言中的二维数组是按行排列的,也就是先存放 a[0] 行,再存放 a[1] 行,最后存放 a[2] 行;每行中的 4 个元素也是依次存放。数组 a 为 int 类型,每个元素占用 4 个字节,整个数组共占用 4×(3×4) = 48 个字节。
 
C语言允许把一个二维数组分解成多个一维数组来处理。对于数组 a,它可以分解成三个一维数组,即 a[0]、a[1]、a[2]。每一个一维数组又包含了 4 个元素,例如 a[0] 包含 a[0][0]、a[0][1]、a[0][2]、a[0][3]。
 
假设数组 a 中第 0 个元素的地址为 1000,那么每个一维数组的首地址如下图所示:


为了更好的理解指针和二维数组的关系,我们先来定义一个指向 a 的指针变量 p: 
int (*p)[4] = a;
括号中的*表明 p 是一个指针,它指向一个数组,数组的类型为int [4],这正是 a 所包含的每个一维数组的类型。
[ ]的优先级高于*,( )是必须要加的,如果赤裸裸地写作int *p[4],那么应该理解为int *(p[4]),p 就成了一个指针数组,而不是二维数组指针,这在 C语言指针数组 中已经讲到。
 对指针进行加法(减法)运算时,它前进(后退)的步长与它指向的数据类型有关,p 指向的数据类型是int [4],那么p+1就前进 4×4 = 16 个字节,p-1就后退 16 个字节,这正好是数组 a 所包含的每个一维数组的长度。也就是说,p+1会使得指针指向二维数组的下一行,p-1会使得指针指向数组的上一行。
 
数组名 a 在表达式中也会被转换为和 p 等价的指针!
 
下面我们就来探索一下如何使用指针 p 来访问二维数组中的每个元素。按照上面的定义:
1) p指向数组 a 的开头,也即第 0 行;p+1前进一行,指向第 1 行。
2) *(p+1)表示取地址上的数据,也就是整个第 1 行数据。注意是一行数据,是多个数据,不是第 1 行中的第 0 个元素,下面的运行结果有力地证明了这一点:
#include <stdio.h>
int main(){
    int a[3][4] = { {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11} };
    int (*p)[4] = a;
    printf("%d\n", sizeof(*(p+1)));
 
    return 0;
}
运行结果:
16
 
3) *(p+1)+1表示第 1 行第 1 个元素的地址。如何理解呢?
*(p+1)单独使用时表示的是第 1 行数据,放在表达式中会被转换为第 1 行数据的首地址,也就是第 1 行第 0 个元素的地址,因为使用整行数据没有实际的含义,编译器遇到这种情况都会转换为指向该行第 0 个元素的指针;就像一维数组的名字,在定义时或者和 sizeof、& 一起使用时才表示整个数组,出现在表达式中就会被转换为指向数组第 0 个元素的指针。
 
4) *(*(p+1)+1)表示第 1 行第 1 个元素的值。很明显,增加一个 * 表示取地址上的数据。
根据上面的结论,可以很容易推出以下的等价关系:
a+i == p+i
a[i] == p[i] == *(a+i) == *(p+i)
a[i][j] == p[i][j] == *(a[i]+j) == *(p[i]+j) == *(*(a+i)+j) == *(*(p+i)+j)
 
 #include <stdio.h>
int main(){
    int a[3][4]={0,1,2,3,4,5,6,7,8,9,10,11};
    int(*p)[4];
    int i,j;
    p=a;
    for(i=0; i<3; i++){
        for(j=0; j<4; j++) printf("%2d  ",*(*(p+i)+j));
        printf("\n");
    }
 
    return 0;
}
运行结果:
 0   1   2   3
 4   5   6   7
 8   9  10  11
 
指针数组和二维数组指针的区别
 
指针数组和二维数组指针在定义时非常相似,只是括号的位置不同:
int *(p1[5]);  //指针数组,可以去掉括号直接写作 int *p1[5];
int (*p2)[5];  //二维数组指针,不能去掉括号
指针数组和二维数组指针有着本质上的区别:指针数组是一个数组,只是每个元素保存的都是指针,以上面的 p1 为例,在32位环境下它占用 4×5 = 20 个字节的内存。二维数组指针是一个指针,它指向一个二维数组,以上面的 p2 为例,它占用 4 个字节的内存。


函数指针


一个函数总是占用一段连续的内存区域,函数名在表达式中有时也会被转换为该函数所在内存区域的首地址,这和数组名非常类似。我们可以把函数的这个首地址(或称入口地址)赋予一个指针变量,使指针变量指向函数所在的内存区域,然后通过指针变量就可以找到并调用该函数。这种指针就是函数指针。
 
函数指针的定义形式为:
returnType (*pointerName)(param list);
returnType 为函数返回值类型,pointerNmae 为指针名称,param list 为函数参数列表。参数列表中可以同时给出参数的类型和名称,也可以只给出参数的类型,省略参数的名称,这一点和函数原型非常类似。
 
注意( )的优先级高于*,第一个括号不能省略,如果写作returnType *pointerName(param list);就成了函数原型,它表明函数的返回值类型为returnType *。
#include <stdio.h>
 
//返回两个数中较大的一个
int max(int a, int b){
    return a>b ? a : b;
}
 
int main(){
    int x, y, maxval;
    //定义函数指针
    int (*pmax)(int, int) = max;  //也可以写作int (*pmax)(int a, int b)
    printf("Input two numbers:");
    scanf("%d %d", &x, &y);
    maxval = (*pmax)(x, y);
    printf("Max value: %d\n", maxval);
 
    return 0;
}
运行结果:
Input two numbers:10 50↙
Max value: 50
 
第 14 行代码对函数进行了调用。pmax 是一个函数指针,在前面加 * 就表示对它指向的函数进行调用。注意( )的优先级高于*,第一个括号不能省略。


指针总结


指针(Pointer)就是内存的地址,C语言允许用一个变量来存放指针,这种变量称为指针变量。指针变量可以存放基本类型数据的地址,也可以存放数组、函数以及其他指针变量的地址。
 
程序在运行过程中需要的是数据和指令的地址,变量名、函数名、字符串名和数组名在本质上是一样的,它们都是地址的助记符:在编写代码的过程中,我们认为变量名表示的是数据本身,而函数名、字符串名和数组名表示的是代码块或数据块的首地址;程序被编译和链接后,这些名字都会消失,取而代之的是它们对应的地址。


1) 指针变量可以进行加减运算,例如p++、p+i、p-=i。指针变量的加减运算并不是简单的加上或减去一个整数,而是跟指针指向的数据类型有关。
 
2) 给指针变量赋值时,要将一份数据的地址赋给它,不能直接赋给一个整数,例如int *p = 1000;是没有意义的,使用过程中一般会导致程序崩溃。
 
3) 使用指针变量之前一定要初始化,否则就不能确定指针指向哪里,如果它指向的内存没有使用权限,程序就崩溃了。对于暂时没有指向的指针,建议赋值NULL。
 
4) 两个指针变量可以相减。如果两个指针变量指向同一个数组中的某个元素,那么相减的结果就是两个指针之间的元素个数。
 
5) 数组也是有类型的,数组名的本意是表示一组类型相同的数据。在定义数组时,或者和 sizeof、& 运算符一起使用时数组名才表示整个数组,表达式中的数组名会被转换为一个指向数组首地址的指针。