安卓面试清单----OKHttp源码解析(一)

来源:互联网 发布:淘宝小也家是正品吗 编辑:程序博客网 时间:2024/06/16 09:29

本文基于OKHttp3.2 。

一个典型 OKhttp 同步请求的发起是这样的:

 Response response = client.newCall(request).execute();

在 OkHttpClient 类中, newCall 方法是这样的:

public Call newCall(Request request) {      return new RealCall(this, request);   }

RealCall 是 Call 的实现类,那我们去 RealCall 中找,

/**来自 RealCall 类*/public Response execute() throws IOException {        synchronized (this) {            if (this.executed) {                throw new IllegalStateException("Already Executed");            }            this.executed = true;        }        Response arg1;        try {            this.client.dispatcher().executed(this);            Response result = this.getResponseWithInterceptorChain(false);            if (result == null) {                throw new IOException("Canceled");            }            arg1 = result;        } finally {            this.client.dispatcher().finished(this);        }        return arg1;    }

很轻松就找到了 execute() 方法,上面代码第10行用到了一个从 OkHttpClient 获得的 Dispatcher 然后把它加入到分发器里面的队列 runningSyncCalls 中,在完成的时候会remove掉。这个队列是一个ArrayDeque。

private final Deque<RealCall> runningSyncCalls = new ArrayDeque();
/**来自 Dispatcher 类*/synchronized void executed(RealCall call) {      this.runningSyncCalls.add(call);   }   synchronized void finished(Call call) {      if(!this.runningSyncCalls.remove(call)) {         throw new AssertionError("Call wasn\'t in-flight!");      }   }

其次会执行:

Response result = this.getResponseWithInterceptorChain(false);

先到这儿,记住 getResponseWithInterceptorChain() 方法,我们再来看异步请求:

也在 RealCall 中:

/**来自 RealCall 类*/void enqueue(Callback responseCallback, boolean forWebSocket) {        synchronized (this) {            if (this.executed) {                throw new IllegalStateException("Already Executed");            }            this.executed = true;        }        this.client.dispatcher().enqueue(                new RealCall.AsyncCall(responseCallback, forWebSocket));    }

是不是和同步很像,但是有两点不同:

1、同步调用的 executed 方法,而异步调用的是分发器的 enqueue 方法。

2、同步传入 execute 方法的参数是 Call,异步传入 enqueue 方法的是AsyncCall,这个是什么呢,这个是 Call 里面的一个内部类,而且是一个继承了Runnable的内部类。

先看第一个不同点:分发器的 enqueue 方法是干什么的?

/**来自 Dispatcher 类*/synchronized void enqueue(AsyncCall call) { //判断当前运行的线程是否超过最大线程数,以及同一个请求是否要超过相同请求同时存在的最大数目      if(this.runningAsyncCalls.size() < this.maxRequests && this.runningCallsForHost(call) < this.maxRequestsPerHost) {         this.runningAsyncCalls.add(call);         //将请求放到线程池里运行         this.executorService().execute(call);      } else {        //不满足运行条件放到后备队列里         this.readyAsyncCalls.add(call);      }   }
/**来自 Dispatcher 类*/public synchronized ExecutorService executorService() {      if(this.executorService == null) {         this.executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue(), Util.threadFactory("OkHttp Dispatcher", false));      }      return this.executorService;   }

很明显,这儿用线程池直接提交了这个实现了 Runable 的 AsyncCall 。
这是一个可缓存的线程池。

从上面代码我们看到异步请求是有条件限制的,默认最多64个请求,而对同一个主机的最大请求默认最多同时存在5个。这两个值都是可以更改的,Dispatcher 提供了相关方法。

public final class Dispatcher {   private int maxRequests = 64;   private int maxRequestsPerHost = 5;   private ExecutorService executorService;   private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque();   private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque();   private final Deque<RealCall> runningSyncCalls = new ArrayDeque();   public Dispatcher(ExecutorService executorService) {      this.executorService = executorService;   }
/**来自 Dispatcher 类*/ private int runningCallsForHost(AsyncCall call) {      int result = 0;      Iterator arg2 = this.runningAsyncCalls.iterator();      while(arg2.hasNext()) {         AsyncCall c = (AsyncCall)arg2.next();          通过比较每个请求的主机地址,一样代表同一个请求         if(c.host().equals(call.host())) {            ++result;         }      }      return result;   }
/**来自 RealCall类*/String host() {            return RealCall.this.originalRequest.url().host();            }

OK,第一个不同点已经分析完,再来看看第二个不同点 AsyncCall 是个什么东东?

AsyncCall 继承自 NamedRunnable ,NamedRunnable 实现了 Runnable 。NamedRunnable 只是给这个 Runnable 起了个名字而已。

public NamedRunnable(String format, Object... args) {      this.name = String.format(format, args);   }

再来看看AsyncCall 的run里面的代码:

/**来自 NamedRunnable 类*/public final void run() {      String oldName = Thread.currentThread().getName();      Thread.currentThread().setName(this.name);      try {         this.execute();      } finally {         Thread.currentThread().setName(oldName);      }   }     protected abstract void execute();

显然AsyncCall的execute才是核心。

/**来自 RealCall 的内部类 AsyncCall 类,继承自 NamedRunnable */protected void execute() {            boolean signalledCallback = false;            try {                Response e = RealCall.this.getResponseWithInterceptorChain(this.forWebSocket);                if (RealCall.this.canceled) {                    signalledCallback = true;    //若请求被取消,则回调 onFailure                  this.responseCallback.onFailure(RealCall.this,                            new IOException("Canceled"));                } else {                    signalledCallback = true;    //若成功返回Response,则回调 onResponse        this.responseCallback.onResponse(RealCall.this, e);                }            } catch (IOException arg5) {                if (signalledCallback) {                    Internal.logger.log(Level.INFO, "Callback failure for "                            + RealCall.this.toLoggableString(), arg5);                } else {                    this.responseCallback.onFailure(RealCall.this, arg5);                }            } finally {                RealCall.this.client.dispatcher().finished(this);            }        }

在代码第八行我们又看到了getResponseWithInterceptorChain()方法。 可以看到,异步和同步一样,最后都执行到了这个方法并返回 Response 。
那我们就来看一下这个方法的实现:

/**来自 RealCall类 */private Response getResponseWithInterceptorChain(boolean forWebSocket)throws IOException {        RealCall.ApplicationInterceptorChain chain = new RealCall.ApplicationInterceptorChain(                0, this.originalRequest, forWebSocket);        return chain.proceed(this.originalRequest);    }

创建了一个ApplicationInterceptorChain ,并且第一个参数传入0,这个0是有特殊用法的,涉及到OKHttp里面的一个功能叫做拦截器,从getResponseWithInterceptorChain这个名字里其实也能看出一二。先看看proceed做了什么:

OKHttp增加的拦截器机制,先来看看官方文档对Interceptors 的解释 :

Interceptors are a powerful mechanism that can monitor, rewrite, and
retry calls.

解释下就是拦截器可以用来转换,重试,重写请求的机制。

/**来自 RealCall 的内部类 ApplicationInterceptorChain,实现了 Chain 接口 */public Response proceed(Request request) throws IOException {              /**先判断是否有拦截器,如果有则首先执行拦截器重写的 intercept 方法,执行完自己写的代码之后,并手动调用 proceed()方法再次判断是否还有拦截器。               若已经没有拦截器存在的话就执行 getResponse()方法*/            if (this.index < RealCall.this.client.interceptors().size()) {                RealCall.ApplicationInterceptorChain chain = RealCall.this.new ApplicationInterceptorChain(                        this.index + 1, request, this.forWebSocket);                Interceptor interceptor = (Interceptor) RealCall.this.client                        .interceptors().get(this.index);                Response interceptedResponse = interceptor.intercept(chain);                if (interceptedResponse == null) {                    throw new NullPointerException("application interceptor "                            + interceptor + " returned null");                } else {                    return interceptedResponse;                }            } else {                return RealCall.this.getResponse(request, this.forWebSocket);            }        }

创建 ApplicationInterceptorChain 的时候第一个参数为0,则this.index==0;

若没有拦截器的话走 else,执行:

return RealCall.this.getResponse(request, this.forWebSocket);

若有1个拦截器的话:

则0<1,回调拦截器中的 intercept 方法。

当我们在拦截器中手动调用 process 后再次回到方法中检查是否有拦截器,此时不满足条件,走 else,最终还是回到了 getResponse 方法。

ApplicationInterceptorChain(int index, Request request,                boolean forWebSocket) {            this.index = index;            this.request = request;            this.forWebSocket = forWebSocket;        }

看下我当时用的一个用于获取打印http请求信息的拦截器(包括请求头,body,url等等,直接打印):

/** * Created by QHT on 2017-04-05. */public class OK_LoggingInterceptor implements Interceptor{        @SuppressLint("DefaultLocale")        @Override        public Response intercept(Interceptor.Chain chain) throws IOException {            //这个chain里面包含了request和response,所以你要什么都可以从这里拿            Request request = chain.request();            long t1 = System.nanoTime();//请求发起的时间            LogUtil.e(String.format("发送请求 %s on %s%n%s",                    request.url(), chain.connection(), request.headers()));            //自定义拦截器必须执行 proceed 方法,以便继续判断是否还存在拦截器            Response response = chain.proceed(request);            long t2 = System.nanoTime();//收到响应的时间            //这里不能直接使用response.body().string()的方式输出日志            //因为response.body().string()之后,response中的流会被关闭,程序会报错,我们需要创建出一个新的response给应用层处理            ResponseBody responseBody = response.peekBody(1024 * 1024);            LogUtil.e(String.format("接收响应: [%s] %n返回json:【%s】 %.1fms%n%s",                    response.request().url(),                    responseBody.string(),                    (t2 - t1) / 1e6d,                    response.headers()));            return response;        }}

这个拦截器发送完请求后打印的效果是这样的:


H快递: com.qht.blog2.Net.OK_LoggingInterceptor.intercept(OK_LoggingInterceptor.java:25)
H快递: 发送请求 http://www.kuaidi100.com/query?type=yunda&postid=7700008953907 on null
H快递: com.qht.blog2.Net.OK_LoggingInterceptor.intercept(OK_LoggingInterceptor.java:37)
H快递: 接收响应: [http://www.kuaidi100.com/query?type=yunda&postid=7700008953907]
返回json:【】 370.2ms
Server: nginx
Date: Tue, 13 Jun 2017 15:21:58 GMT
Content-Type: text/html;charset=UTF-8
Transfer-Encoding: chunked
Connection: keep-alive
P3P: CP=”IDC DSP COR ADM DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT”
Cache-Control: no-cache
Vary: Accept-Encoding


在处理完拦截器操作后,就进入到重要的getResponse方法,真正的去进行发送请求,处理请求,接收返回结果。

/**来自RealCall类 */Response getResponse(Request request, boolean forWebSocket)            throws IOException {        RequestBody body = request.body();        if (body != null) {             Builder followUpCount = request.newBuilder();            MediaType releaseConnection = body.contentType();            if (releaseConnection != null) {                followUpCount.header("Content-Type",                        releaseConnection.toString());            }            long response = body.contentLength();            if (response != -1L) {                followUpCount.header("Content-Length", Long.toString(response));                followUpCount.removeHeader("Transfer-Encoding");            } else {                followUpCount.header("Transfer-Encoding", "chunked");                followUpCount.removeHeader("Content-Length");            }            request = followUpCount.build();        } //新建HttpEngine,用于进行发送请求和读取答复的细节处理        this.engine = new HttpEngine(this.client, request, false, false,                forWebSocket, (StreamAllocation) null, (RetryableSink) null,                (Response) null);        int arg19 = 0;        while (!this.canceled) {            boolean arg20 = true;            boolean arg14 = false;            StreamAllocation streamAllocation;            label173: {                label172: {                    try {                        HttpEngine followUp;                        try {                            arg14 = true;                            this.engine.sendRequest();                            this.engine.readResponse();                            arg20 = false;                            arg14 = false;                            break label173;                        } catch (RequestException arg15) {                            throw arg15.getCause();                        } catch (RouteException arg16) {                            followUp = this.engine.recover(                                    arg16.getLastConnectException(),                                    (Sink) null);                            if (followUp == null) {                                throw arg16.getLastConnectException();                            }                        } catch (IOException arg17) {                            followUp = this.engine.recover(arg17, (Sink) null);                            if (followUp != null) {                                arg20 = false;                                this.engine = followUp;                                arg14 = false;                                break label172;                            }                            throw arg17;                        }                        arg20 = false;                        this.engine = followUp;                        arg14 = false;                    } finally {                        if (arg14) {                            if (arg20) {                                StreamAllocation streamAllocation1 = this.engine                                        .close();                                streamAllocation1.release();                            }                        }                    }                    if (arg20) {                        streamAllocation = this.engine.close();                        streamAllocation.release();                    }                    continue;                }                if (arg20) {                    streamAllocation = this.engine.close();                    streamAllocation.release();                }                continue;            }            if (arg20) {                StreamAllocation arg21 = this.engine.close();                arg21.release();            }            Response arg22 = this.engine.getResponse();             //得到该请求对应的后续请求,比如重定向之类的            Request arg23 = this.engine.followUpRequest();            if (arg23 == null) {                if (!forWebSocket) {                    this.engine.releaseStreamAllocation();                }                return arg22;            }            streamAllocation = this.engine.close();            ++arg19;            if (arg19 > 20) {                streamAllocation.release();                throw new ProtocolException("Too many follow-up requests: "                        + arg19);            }            if (!this.engine.sameConnection(arg23.url())) {                streamAllocation.release();                streamAllocation = null;            }            this.engine = new HttpEngine(this.client, arg23, false, false,                    forWebSocket, streamAllocation, (RetryableSink) null, arg22);        }        this.engine.releaseStreamAllocation();        throw new IOException("Canceled");    }

没错,就是这么长。
可以看到如果是post请求,先做一定的头部处理,然后新建一个HttpEngine去处理具体的操作,通过sendRequest发送具体请求操作,readResponse对服务器的答复做一定处理,最后得到从服务器返回的Response,讲到这里,我们整个的流程大概疏通了,代码贴了很多,简单的可以用下面一张图概括 :
这里写图片描述

getResponse() 方法的内容还有很多,下篇再分析。