安卓面试清单----OKHttp源码解析(三)

来源:互联网 发布:java实现分段函数 编辑:程序博客网 时间:2024/06/05 06:11

sendRequest ()

上篇文章我们讲了sendRequest ()方法,这节接着来看readResponse方法:

/**来自HttpEngine 类*/ public void readResponse() throws IOException {      if(this.userResponse == null) {         if(this.networkRequest == null && this.cacheResponse == null) {            throw new IllegalStateException("call sendRequest() first!");         } else if(this.networkRequest != null) {            Response networkResponse;            if(this.forWebSocket) {               this.httpStream.writeRequestHeaders(this.networkRequest);               networkResponse = this.readNetworkResponse();            } else if(!this.callerWritesRequestBody) {             // 先执行拦截器,再写入request到HttpStream的Sinkbuffer中,最后发送buffer,并读取response               networkResponse = (new HttpEngine.NetworkInterceptorChain(0, this.networkRequest)).proceed(this.networkRequest);            } else {               if(this.bufferedRequestBody != null && this.bufferedRequestBody.buffer().size() > 0L) {               // 将request body的buffer发出去,这样requestBodyOut中就有了body                  this.bufferedRequestBody.emit();               }               if(this.sentRequestMillis == -1L) {                  if(OkHeaders.contentLength(this.networkRequest) == -1L && this.requestBodyOut instanceof RetryableSink) {                     long responseCache = ((RetryableSink)this.requestBodyOut).contentLength();                     this.networkRequest = this.networkRequest.newBuilder().header("Content-Length", Long.toString(responseCache)).build();                  }                  this.httpStream.writeRequestHeaders(this.networkRequest);               }               if(this.requestBodyOut != null) {                  if(this.bufferedRequestBody != null) {                     this.bufferedRequestBody.close();                  } else {                     this.requestBodyOut.close();                  }                  if(this.requestBodyOut instanceof RetryableSink) {                // body 写入socket中                                   this.httpStream.writeRequestBody((RetryableSink)this.requestBodyOut);                  }               }               networkResponse = this.readNetworkResponse();            }            this.receiveHeaders(networkResponse.headers());            if(this.cacheResponse != null) {               if(validate(this.cacheResponse, networkResponse)) {                  this.userResponse = this.cacheResponse.newBuilder().request(this.userRequest).priorResponse(stripBody(this.priorResponse)).headers(combine(this.cacheResponse.headers(), networkResponse.headers())).cacheResponse(stripBody(this.cacheResponse)).networkResponse(stripBody(networkResponse)).build();                  networkResponse.body().close();                  this.releaseStreamAllocation();                  InternalCache responseCache1 = Internal.instance.internalCache(this.client);                  responseCache1.trackConditionalCacheHit();                  responseCache1.update(this.cacheResponse, stripBody(this.userResponse));                  this.userResponse = this.unzip(this.userResponse);                  return;               }               Util.closeQuietly(this.cacheResponse.body());            }            this.userResponse = networkResponse.newBuilder().request(this.userRequest).priorResponse(stripBody(this.priorResponse)).cacheResponse(stripBody(this.cacheResponse)).networkResponse(stripBody(networkResponse)).build();            if(hasBody(this.userResponse)) {               this.maybeCache();               this.userResponse = this.unzip(this.cacheWritingResponse(this.storeRequest, this.userResponse));            }         }      }   }

定位到第8行:

this.httpStream.writeRequestHeaders(this.networkRequest);

writeRequestHeaders这个方法是HttpStream 接口的方法,由Http1xStream和Http2xStream重写。

如果采用http1.x协议,则执行Http1xStream里面的writeRequestHeaders方法,如果为http2.0,则执行Http2xStream的。由上文我们知道这取决于请求是http还是https。我们以1x为类:

/**来自 Http1xStream 类*/public void writeRequestHeaders(Request request) throws IOException {        this.httpEngine.writingRequestHeaders();        String requestLine = RequestLine.get(request, this.httpEngine                .getConnection().route().proxy().type());        this.writeRequest(request.headers(), requestLine);    }

首先得到请求的RequestLine(StatusLine),这个值由方法名、URL,Http协议拼接而成。
其次执行writeRequest方法:

/**来自 Http1xStream 类*/public void writeRequest(Headers headers, String requestLine)            throws IOException {        if (this.state != 0) {            throw new IllegalStateException("state: " + this.state);        } else {            this.sink.writeUtf8(requestLine).writeUtf8("\r\n");            int i = 0;            for (int size = headers.size(); i < size; ++i) {                this.sink.writeUtf8(headers.name(i)).writeUtf8(": ")                        .writeUtf8(headers.value(i)).writeUtf8("\r\n");            }            this.sink.writeUtf8("\r\n");            this.state = 1;        }    }

主要是将StatusLine和header信息写入sink,sink是什么呢,因为从上篇我们知道OKhttp底部是socket通信,所以sink就相当于我们在httpUrlConnection中使用的inputStream,它是socket的写入流,而source就是OutPutStream。

readNetworkResponse()

再看第9行:

/**来自 HttpEngine 类*/private Response readNetworkResponse() throws IOException {     //对sink流执行flush操作      this.httpStream.finishRequest();      //等待服务器相应并读取服务器返回信息组装成我们需要的response      Response networkResponse = this.httpStream.readResponseHeaders().request(this.networkRequest).handshake(this.streamAllocation.connection().handshake()).header(OkHeaders.SENT_MILLIS, Long.toString(this.sentRequestMillis)).header(OkHeaders.RECEIVED_MILLIS, Long.toString(System.currentTimeMillis())).build();      if(!this.forWebSocket) {         networkResponse = networkResponse.newBuilder().body(this.httpStream.openResponseBody(networkResponse)).build();      }      if("close".equalsIgnoreCase(networkResponse.request().header("Connection")) || "close".equalsIgnoreCase(networkResponse.header("Connection"))) {         this.streamAllocation.noNewStreams();      }      return networkResponse;   }

看下这个方法第7行是怎么组装的呢?

/**来自Http1xStream 类(下面是两个方法)*/public Builder readResponseHeaders() throws IOException {        return this.readResponse();    }    public Builder readResponse() throws IOException {        if (this.state != 1 && this.state != 3) {            throw new IllegalStateException("state: " + this.state);        } else {            try {                StatusLine e;                Builder exception1;                 // 如果返回code不是100, 则直接将Response对象返回        // 对于100,continue,server还会继续返回response string,我们需要在while循环中继续接收并解析                do {                    e = StatusLine.parse(this.source.readUtf8LineStrict());                     // 从输入流里读出答复并组装成答复消息,放入构造的Response的工厂类Build中                    exception1 = (new Builder()).protocol(e.protocol)                            .code(e.code).message(e.message)                            //答复头部的读取                            .headers(this.readHeaders());                } while (e.code == 100);                this.state = 4;                return exception1;            } catch (EOFException arg2) {                IOException exception = new IOException(                        "unexpected end of stream on " + this.streamAllocation);                exception.initCause(arg2);                throw exception;            }        }    }

上面主要是对答复头部的信息进行整理,而readNetworkResponse方法的第13行主要是对服务返回的body进行组装整理:

/**来自Http1xStream 类(下面是两个方法)*/public ResponseBody openResponseBody(Response response) throws IOException {        Source source = this.getTransferStream(response);        return new RealResponseBody(response.headers(), Okio.buffer(source));    }    private Source getTransferStream(Response response) throws IOException {        if (!HttpEngine.hasBody(response)) {            return this.newFixedLengthSource(0L);        } else if ("chunked".equalsIgnoreCase(response                .header("Transfer-Encoding"))) {            return this.newChunkedSource(this.httpEngine);        } else {            long contentLength = OkHeaders.contentLength(response);            return contentLength != -1L ? this                    .newFixedLengthSource(contentLength) : this                    .newUnknownLengthSource();        }    }
this.newChunkedSource(this.httpEngine);

这句代码最后执行到ChunkedSource (实现source接口)的 read方法:

    public long read(Buffer sink, long byteCount) throws IOException {            if (byteCount < 0L) {                throw new IllegalArgumentException("byteCount < 0: "                        + byteCount);            } else if (this.closed) {                throw new IllegalStateException("closed");            } else if (!this.hasMoreChunks) {                return -1L;            } else {                if (this.bytesRemainingInChunk == 0L                        || this.bytesRemainingInChunk == -1L) {                    this.readChunkSize();                    if (!this.hasMoreChunks) {                        return -1L;                    }                }                long read = Http1xStream.this.source.read(sink,                        Math.min(byteCount, this.bytesRemainingInChunk));                if (read == -1L) {                    this.endOfInput(false);                    throw new ProtocolException("unexpected end of stream");                } else {                    this.bytesRemainingInChunk -= read;                    return read;                }            }        }

上面我们已经分析了Source是我们从服务读取的输入流,类似于OutPutStream,read方法则是从服务读取。

最终,回到readResponse方法的第9行,我们得到了完整的networkResponse。

我们再来看看validate(cacheResponse, networkResponse)方法是如何判断缓存是否可用的:

/**来自HttpEngine 类的ReadResponse方法*/  private static boolean validate(Response cached, Response network) {    //如果服务器返回304则缓存有效      if(network.code() == 304) {         return true;      } else {         Date lastModified = cached.headers().getDate("Last-Modified");            //通过缓存和网络请求响应中的Last-Modified来计算是否是最新数据,如果是则缓存有效         if(lastModified != null) {            Date networkLastModified = network.headers().getDate("Last-Modified");            if(networkLastModified != null && networkLastModified.getTime() < lastModified.getTime()) {               return true;            }         }         return false;      }   }

cache response存在的情况下,应该是缓存过期或者强制放弃缓存,在此情况下,缓存策略全部交给服务器判断,客户端只用发送条件get请求来验证cache的内容是否有变更即可,如果缓存是有效的,则返回304 Not Modifiled,且response中不会包含body,否则cache改变,回复200, OK。response中包含body。条件get请求有两种方式一种是Last-Modified-Date,一种是 ETag。这里采用了Last-Modified-Date,通过缓存和网络请求响应中的Last-Modified来计算是否是最新数据,如果是则缓存有效。

回到第一篇文章查找两个个参数 forWebSocket 和 callerWritesRequestBody,可以发现,这两个参数都为false,那么就是说
在readResponse方法中默认是不会执行第8、9行的,而是会去执行第11行,我们分析过发送请求时使用的拦截器模式,这里对答复的操作也用了同样的方式,不同于请求调用的是intercept,这里用的是proceed。所以我们有必要再分析以下这个拦截器,
重点是 proceed方法:

/**来自HttpEngine 的内部类 NetworkInterceptorChain 实现了Chain接口*/  public Response proceed(Request request) throws IOException {         ++this.calls;         if(this.index > 0) {            Interceptor response = (Interceptor)HttpEngine.this.client.networkInterceptors().get(this.index - 1);            Address code = this.connection().route().address();            if(!request.url().host().equals(code.url().host()) || request.url().port() != code.url().port()) {               throw new IllegalStateException("network interceptor " + response + " must retain the same host and port");            }            if(this.calls > 1) {               throw new IllegalStateException("network interceptor " + response + " must call proceed() exactly once");            }         }         if(this.index < HttpEngine.this.client.networkInterceptors().size()) {         //根据拦截器的数目取出拦截器并执行intercept里面用户自定义的处理方式,和我们之前分析过的一样         //            HttpEngine.NetworkInterceptorChain arg6 = HttpEngine.this.new NetworkInterceptorChain(this.index + 1, request);            Interceptor arg9 = (Interceptor)HttpEngine.this.client.networkInterceptors().get(this.index);            Response interceptedResponse = arg9.intercept(arg6);            if(arg6.calls != 1) {               throw new IllegalStateException("network interceptor " + arg9 + " must call proceed() exactly once");            } else if(interceptedResponse == null) {               throw new NullPointerException("network interceptor " + arg9 + " returned null");            } else {               return interceptedResponse;            }         } else {             //写入请求头部             HttpEngine.this.httpStream.writeRequestHeaders(request);            HttpEngine.this.networkRequest = request;             //写入一些请求体               Sink arg4 = HttpEngine.this.httpStream.createRequestBody(request, request.body().contentLength());               BufferedSink arg7 = Okio.buffer(arg4);               request.body().writeTo(arg7);               arg7.close();            }            //将之前写入的数据flush给socket并读取服务器答复            Response arg5 = HttpEngine.this.readNetworkResponse();            int arg8 = arg5.code();            if((arg8 == 204 || arg8 == 205) && arg5.body().contentLength() > 0L) {               throw new ProtocolException("HTTP " + arg8 + " had non-zero Content-Length: " + arg5.body().contentLength());            } else {               return arg5;            }         }      }

里面的writeRequestHeader方法和 readNetworkResponse 方法我们已经分析过了。再经过这么多7788的跳转、嵌套,终于拿到了我们需要的Response。最后回到我们第一篇文章最初的getResponse 方法,找到这两句:

            Response arg22 = this.engine.getResponse();            Request arg23 = this.engine.followUpRequest();

第一句很明显是得到我们的response,直接返回userResponse。
第二句是对请求结果发生重定向时的处理,client发送一个request之后,server可能回复一个重定向的response,并在这个response中告知client需要重新访问的server的IP。此时,client需要重新向新的server发送request,并等待新server的回复。所以我们需要单独判断重定向response,并发送多次request。有了OKHttp,这一切你都不用管,它会自动帮你完成所有这一切。OKHttp中followUpRequest()方法就是完成这个功能的。

总结

OKHttp底层源码还是相当复杂的,毕竟它的功能如此之强大。OKHttp默认采用了Keep-Alive持久连接技术(并不代表一定长连接,取决于服务器),可支持gzip编码的response。在cache的处理上,如果cache可用,则直接使用cache,否则使用网络数据。OKHttp会做cache过期的判断和过期后的再验证。有了OKHttp,这一切你都不用管,它帮你cover掉了!

当需要做用户验证和重定向时,我们一般需要发送认证request,或向新server发送request,也就是要重新再生成新request并发送出去。有了OKHttp,这一切你都不用管,它又帮你cover掉了!

后期

1、研读几遍更新其中的错误和不足的点。
2、完善流程图,做到全面理解。