SGD平行算法

来源:互联网 发布:成都php培训机构 编辑:程序博客网 时间:2024/04/30 10:18

SGD 被广泛运用到机器学习(machine learning)中最优化等问题中,学术界一直热衷于提升SGD在优化问题中的收敛速率,并行计算也是热点研究的方向(包括Hogwild! [1], Delay-tolerant Algorithm for SGD [2], Elastic Average SGD [3]),本篇实现了现在比较火的Downpour SGD [4]的样例代码 (选择这个的原因引用量最大)。

理论思想

核心思想,将数据随机划分成数个子数据集sub-data, 将模型变量划分数个机器/进程/线程,基于子集合数据更新各个机器/进程/线程内的变量n次,然后到master 节点更新模型变量,各个机器/进程/线程训练独立互不干扰, 而且各个机器/进程/线程内的模型变量在训练中也互不干扰。引用原文原话 [4]:

We divide the training data into a number of subsets and run a copy of the model on
each of these subsets. The models communicate updates through a centralized parameter server,
which keeps the current state of all parameters for the model, sharded across many machines (e.g.,
if we have 10 parameter server shards, each shard is responsible for storing and applying updates
to 1/10th of the model parameters) (Figure 2). This approach is asynchronous in two distinct aspects:
the model replicas run independently of each other, and the parameter server shards also run
independently of one another

代码部分

# -*- encoding: utf-8 -*-import reimport sysimport numpy as npimport copyimport timeimport threadingdef timeConsumption(func):    def func_wrapper(x):        start_time = time.time()        func(x)        end_time = time.time()        print "[Function-Time-Consumption] ", end_time - start_time    return func_wrapperdef initialize(length=100):    """    """    global X    global Y    X = []    Y = []    mu, sigma = 0, 0.1    V = 100    # here we assume x is two-dimesion matrix     for i in np.random.random(length):        a = i * V        for j in np.random.random(length):             b = j * V            X.append([a**2, b**2, a, b, 1, 1])    # white noise    noise = np.random.normal(mu, sigma, size=length * length)    # a * x**2 + b * x + c    function = lambda x: np.dot([103.0, -22.5, 35.5, -28, 43, 19.0], x)    Y = [function(X[i]) + noise[i] for i in range(length * length)]     X = np.array(X)    Y = np.array(Y)    return X, Yclass HogwildThreading(threading.Thread):    """    """    def __init__(self, threadID, name, dIndex, pIndex, n, param, gama, function, eplison):        """        """        threading.Thread.__init__(self)        self.threadID = threadID        self.name = name        self.dIndex = dIndex        self.pIndex = pIndex        self.n = n        self.param = copy.copy(param)        self.gama = gama        self.function = function        self.eplison = eplison    def run(self):        """        In each threading,             update relevant parameters with each sub-dataset for each n step        """        global X        global Y        global derative        while self.n > 0:            local_y = [self.function(self.param, x) for x in X[self.dIndex]]            diff = np.mean(np.subtract(local_y, Y[self.dIndex]))            if abs(diff) < self.eplison: break            # print self.name + "-" + self.threadID + " : " + str(diff)            for i in self.pIndex:                self.param[i] -= self.gama * derative[i] * diff            self.n -= 1class HogwildSGD(object):    """    """    def __init__(self, X, Y, eplison=0.000001, gama=0.01, iter_num=1000, thread_num=10):        """        ref: https://arxiv.org/abs/1106.5730        """        _d = X.shape[-1]        # set up number of threads        if _d < thread_num: self.thread_num = _d        else: self.thread_num = thread_num        # parameter initailization        self.a = np.random.normal(0, 1, size=_d)        print self.a        self.eplison = eplison        self.gama = (1.0 / max(Y)) * 1.0 / len(X)        self.iter_num = iter_num    def function(self, a, x):        """        Do we have prior knowledge about the function?            - quadratic ?            - exponential ?            - linear ?        """        return np.dot(a, x)    def chunkIt(self, seq, num):        avg = len(seq) / float(num)        out = []        last = 0.0        while last < len(seq):            out.append(seq[int(last):int(last + avg)])            last += avg        return out    @timeConsumption    def run(self):        """        """        global X        global Y        global derative        derative = []        for i in range(len(self.a)):            derative.append(np.mean([x[i] for x in X]))        dIndex = range(len(X))        np.random.shuffle(dIndex)        dIndex = self.chunkIt(dIndex, self.thread_num)        diff = 1        while(abs(diff) > self.eplison and self.iter_num > 0):            pIndex = range(len(self.a))            np.random.shuffle(pIndex)            pIndex = self.chunkIt(pIndex, self.thread_num)            threads = []            for i in range(self.thread_num):                instance = HogwildThreading(str(i), "HogwildThreading", dIndex[i], pIndex[i], 10, self.a, self.gama, self.function, self.eplison)                instance.start()                threads.append(instance)            for i in range(self.thread_num):                threads[i].join()            # update parameter from each data-shards            for i in range(self.thread_num):                index = threads[i].pIndex                for j in index:                    self.a[j] = threads[i].param[j]            local_y = [self.function(self.a, x) for x in X]            diff = np.mean(np.subtract(local_y, Y))             print diff            self.iter_num -= 1        print self.adef main():    """    """    X, Y = initialize()    instance = HogwildSGD(X, Y)    instance.run()if __name__ == "__main__":    reload(sys)    sys.setdefaultencoding("utf-8")    main()