tensorflow教程学习三TensorFlow运作方式入门

来源:互联网 发布:被冒名网络贷款 编辑:程序博客网 时间:2024/05/29 03:24

讲解链接:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_tf.html

"""Trains and Evaluates the MNIST network using a feed dictionary."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function# pylint: disable=missing-docstringimport argparseimport osimport sysimport timefrom six.moves import xrange  # pylint: disable=redefined-builtinimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.examples.tutorials.mnist import mnistFLAGS = None#placeholder_inputs()函数将生成两个tf.placeholder操作,定义传入图表中的shape参数,#shape参数中包括batch_size值,后续还会将实际的训练用例传入图表。#在训练循环(training loop)的后续步骤中,传入的整个图像和标签数据集会被切片,#以符合每一个操作所设置的batch_size值,占位符操作将会填补以符合这个batch_size值。#然后使用feed_dict参数,将数据传入sess.run()函数。def placeholder_inputs(batch_size):  images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,mnist.IMAGE_PIXELS))  labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))  return images_placeholder, labels_placeholderdef fill_feed_dict(data_set, images_pl, labels_pl):  images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size,FLAGS.fake_data)  feed_dict = {      images_pl: images_feed,      labels_pl: labels_feed,  }  return feed_dictdef do_eval(sess,eval_correct,images_placeholder,labels_placeholder,data_set):  # And run one epoch of eval.  true_count = 0  # Counts the number of correct predictions.  steps_per_epoch = data_set.num_examples // FLAGS.batch_size  num_examples = steps_per_epoch * FLAGS.batch_size  for step in xrange(steps_per_epoch):    feed_dict = fill_feed_dict(data_set,                               images_placeholder,                               labels_placeholder)    true_count += sess.run(eval_correct, feed_dict=feed_dict)  precision = float(true_count) / num_examples  print('  Num examples: %d  Num correct: %d  Precision @ 1: %0.04f' %        (num_examples, true_count, precision))def run_training():#在run_training()方法的一开始,input_data.read_data_sets()函数会确保你的本地训练文件夹中,#已经下载了正确的数据,然后将这些数据解压并返回一个含有DataSet实例的字典。  data_sets = input_data.read_data_sets(FLAGS.input_data_dir, FLAGS.fake_data)  # Tell TensorFlow that the model will be built into the default Graph.  with tf.Graph().as_default():    # Generate placeholders for the images and labels.    images_placeholder, labels_placeholder = placeholder_inputs(        FLAGS.batch_size)    # Build a Graph that computes predictions from the inference model.    logits = mnist.inference(images_placeholder,                             FLAGS.hidden1,                             FLAGS.hidden2)    # Add to the Graph the Ops for loss calculation.    loss = mnist.loss(logits, labels_placeholder)    # Add to the Graph the Ops that calculate and apply gradients.    train_op = mnist.training(loss, FLAGS.learning_rate)    # Add the Op to compare the logits to the labels during evaluation.    eval_correct = mnist.evaluation(logits, labels_placeholder)    # Build the summary Tensor based on the TF collection of Summaries.    summary = tf.summary.merge_all()    # Add the variable initializer Op.    init = tf.global_variables_initializer()    # Create a saver for writing training checkpoints.    saver = tf.train.Saver()    sess = tf.Session()    summary_writer = tf.summary.FileWriter(FLAGS.log_dir, sess.graph)    sess.run(init)    # Start the training loop.    for step in xrange(FLAGS.max_steps):      start_time = time.time()      feed_dict = fill_feed_dict(data_sets.train,                                 images_placeholder,                                 labels_placeholder)      _, loss_value = sess.run([train_op, loss],                               feed_dict=feed_dict)      duration = time.time() - start_time      # Write the summaries and print an overview fairly often.      if step % 100 == 0:        # Print status to stdout.        print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))        # Update the events file.        summary_str = sess.run(summary, feed_dict=feed_dict)        summary_writer.add_summary(summary_str, step)        summary_writer.flush()      # Save a checkpoint and evaluate the model periodically.      if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:        checkpoint_file = os.path.join(FLAGS.log_dir, 'model.ckpt')        saver.save(sess, checkpoint_file, global_step=step)        # Evaluate against the training set.        print('Training Data Eval:')        do_eval(sess,                eval_correct,                images_placeholder,                labels_placeholder,                data_sets.train)        # Evaluate against the validation set.        print('Validation Data Eval:')        do_eval(sess,                eval_correct,                images_placeholder,                labels_placeholder,                data_sets.validation)        # Evaluate against the test set.        print('Test Data Eval:')        do_eval(sess,                eval_correct,                images_placeholder,                labels_placeholder,                data_sets.test)def main(_):  if tf.gfile.Exists(FLAGS.log_dir):    tf.gfile.DeleteRecursively(FLAGS.log_dir)  tf.gfile.MakeDirs(FLAGS.log_dir)  run_training()if __name__ == '__main__':  parser = argparse.ArgumentParser()  parser.add_argument(      '--learning_rate',      type=float,      default=0.01,      help='Initial learning rate.'  )  parser.add_argument(      '--max_steps',      type=int,      default=2000,      help='Number of steps to run trainer.'  )  parser.add_argument(      '--hidden1',      type=int,      default=128,      help='Number of units in hidden layer 1.'  )  parser.add_argument(      '--hidden2',      type=int,      default=32,      help='Number of units in hidden layer 2.'  )  parser.add_argument(      '--batch_size',      type=int,      default=100,      help='Batch size.  Must divide evenly into the dataset sizes.'  )  parser.add_argument(      '--input_data_dir',      type=str,      default=os.path.join(os.getenv('TEST_TMPDIR', 'tmp'),                           'tensorflow/mnist/input_data'),      help='Directory to put the input data.'  )  parser.add_argument(      '--log_dir',      type=str,      default=os.path.join(os.getenv('TEST_TMPDIR', 'tmp'),                           'tensorflow/mnist/logs/fully_connected_feed'),      help='Directory to put the log data.'  )  parser.add_argument(      '--fake_data',      default=False,      help='If true, uses fake data for unit testing.',      action='store_true'  )  FLAGS, unparsed = parser.parse_known_args()  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

附一张运行结果图:
这里写图片描述

构建图表 (Build the Graph)
在为数据创建占位符之后,就可以运行mnist.py文件,经过三阶段的模式函数操作:inference(), loss(),和training()。图表就构建完成了。

1.inference() —— 尽可能地构建好图表,满足促使神经网络向前反馈并做出预测的要求。

2.loss() —— 往inference图表中添加生成损失(loss)所需要的操作(ops)。

3.training() —— 往损失图表中添加计算并应用梯度(gradients)所需的操作。

训练模型
一旦图表构建完毕,就通过fully_connected_feed.py文件中的用户代码进行循环地迭代式训练和评估。

图表
在run_training()这个函数的一开始,是一个Python语言中的with命令,这个命令表明所有已经构建的操作都要与默认的tf.Graph全局实例关联起来。

会话
完成全部的构建准备、生成全部所需的操作之后,我们就可以创建一个tf.Session,用于运行图表。

训练循环
完成会话中变量的初始化之后,就可以开始训练了。

向图表提供反馈
执行每一步时,我们的代码会生成一个反馈字典(feed dictionary),其中包含对应步骤中训练所要使用的例子,这些例子的哈希键就是其所代表的占位符操作。

检查状态
在运行sess.run函数时,要在代码中明确其需要获取的两个值:[train_op, loss]。

状态可视化
为了释放TensorBoard所使用的事件文件(events file),所有的即时数据(在这里只有一个)都要在图表构建阶段合并至一个操作(op)中。

评估模型
每隔一千个训练步骤,我们的代码会尝试使用训练数据集与测试数据集,对模型进行评估。do_eval函数会被调用三次,分别使用训练数据集、验证数据集合测试数据集。

构建评估图表(Eval Graph)
在打开默认图表(Graph)之前,我们应该先调用get_data(train=False)函数,抓取测试数据集。

评估图表的输出(Eval Output)
之后,我们可以创建一个循环,往其中添加feed_dict,并在调用sess.run()函数时传入eval_correct操作,目的就是用给定的数据集评估模型。

原创粉丝点击