SLAM学习——建图问题(一)

来源:互联网 发布:网络歌手袁晓婕诈骗 编辑:程序博客网 时间:2024/05/22 06:11

1.单目稠密地图的构建

在上述中,我们讨论的是稀疏地图的构建,但是在实际的定位、导航和壁障过程中,我们需要有稠密地图。常见的单目稠密地图的构建思路有:
1.单目:通过运动,得出运动轨迹,计算出运动的关系,通过三角测量计算出像素深度。(同下)
2.双目:利用俩个相机的视差计算出像素的深度。(吃力不讨好,但是大型场合可能有比较好的效果。)
3.RGBD:自带深度图,可直接得到像素的深度。(比较好,但是不适合大型场合)

对于单目而言,即我们提到的第一种方法,通过单目建立稠密地图:
1.提取特征点,然后在很多图像中,进行特征点的匹配,跟踪特征点在各张图像的轨迹(经常用ORB特征提取)
2.然后通过三角测量估计每一个像素的深度。在这里,我们需要利用很多的三角测量使得某点的深度进行收敛,得到确切的深度信息。

在稠密深度地图中,无法对每个像素计算其描述子,所以在稠密估计问题中,匹配成为很重要的一环,我们用到了极线搜索和块匹配技术,极线搜索的原理如下图所示:

这里写图片描述

而块匹配技术就相当于把像素的比较换成了块的比较,我们直接上代码可得:

#include <iostream>#include <vector>#include <fstream>using namespace std;#include <boost/timer.hpp>// for sophus#include <sophus/se3.h> //这里使用了sophus这个工具,使用SE3using Sophus::SE3;// for eigen#include <Eigen/Core>#include <Eigen/Geometry>using namespace Eigen;#include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>using namespace cv;// ------------------------------------------------------------------// parametersconst int boarder = 20;     // 边缘宽度const int width = 640;      // 宽度const int height = 480;     // 高度const double fx = 481.2f;   // 相机内参const double fy = -480.0f;const double cx = 319.5f;const double cy = 239.5f;const int ncc_window_size = 2;  // NCC 取的窗口半宽度const int ncc_area = (2*ncc_window_size+1)*(2*ncc_window_size+1); // NCC窗口面积const double min_cov = 0.1; // 收敛判定:最小方差const double max_cov = 10;  // 发散判定:最大方差// ------------------------------------------------------------------// 重要的函数// 从 REMODE 数据集读取数据bool readDatasetFiles(    const string& path,    vector<string>& color_image_files,    vector<SE3>& poses);// 根据新的图像更新深度估计bool update(    const Mat& ref,    const Mat& curr,    const SE3& T_C_R,    Mat& depth,    Mat& depth_cov);// 极线搜索bool epipolarSearch(    const Mat& ref,    const Mat& curr,    const SE3& T_C_R,    const Vector2d& pt_ref,    const double& depth_mu,    const double& depth_cov,    Vector2d& pt_curr);// 更新深度滤波器bool updateDepthFilter(    const Vector2d& pt_ref,    const Vector2d& pt_curr,    const SE3& T_C_R,    Mat& depth,    Mat& depth_cov);// 计算 NCC 评分double NCC( const Mat& ref, const Mat& curr, const Vector2d& pt_ref, const Vector2d& pt_curr );// 双线性灰度插值inline double getBilinearInterpolatedValue( const Mat& img, const Vector2d& pt ) {    uchar* d = & img.data[ int(pt(1,0))*img.step+int(pt(0,0)) ];    double xx = pt(0,0) - floor(pt(0,0));    double yy = pt(1,0) - floor(pt(1,0));    return  (( 1-xx ) * ( 1-yy ) * double(d[0]) +            xx* ( 1-yy ) * double(d[1]) +            ( 1-xx ) *yy* double(d[img.step]) +            xx*yy*double(d[img.step+1]))/255.0;}// ------------------------------------------------------------------// 一些小工具// 显示估计的深度图bool plotDepth( const Mat& depth );// 像素到相机坐标系inline Vector3d px2cam ( const Vector2d px ) {    return Vector3d (        (px(0,0) - cx)/fx,        (px(1,0) - cy)/fy,        1    );}// 相机坐标系到像素inline Vector2d cam2px ( const Vector3d p_cam ) {    return Vector2d (        p_cam(0,0)*fx/p_cam(2,0) + cx,        p_cam(1,0)*fy/p_cam(2,0) + cy    );}// 检测一个点是否在图像边框内inline bool inside( const Vector2d& pt ) {    return pt(0,0) >= boarder && pt(1,0)>=boarder        && pt(0,0)+boarder<width && pt(1,0)+boarder<=height;}// 显示极线匹配void showEpipolarMatch( const Mat& ref, const Mat& curr, const Vector2d& px_ref, const Vector2d& px_curr );// 显示极线void showEpipolarLine( const Mat& ref, const Mat& curr, const Vector2d& px_ref, const Vector2d& px_min_curr, const Vector2d& px_max_curr );// ------------------------------------------------------------------int main( int argc, char** argv ){    // 从数据集读取数据    vector<string> color_image_files;    vector<SE3> poses_TWC;    //该函数的功能是将图片名和位姿从文件中提取出来并进行存储    //其中“/home/.../data”是存放文件的路径    bool ret = readDatasetFiles(“/home/.../data”, color_image_files, poses_TWC );    if ( ret==false )    {        cout<<"Reading image files failed!"<<endl;        return -1;    }    cout<<"read total "<<color_image_files.size()<<" files."<<endl;    // 第一张图    Mat ref = imread( color_image_files[0], 0 );               // gray-scale image    SE3 pose_ref_TWC = poses_TWC[0];    double init_depth   = 3.0;    // 深度初始值    double init_cov2    = 3.0;    // 方差初始值    Mat depth( height, width, CV_64F, init_depth );             // 深度图    Mat depth_cov( height, width, CV_64F, init_cov2 );          // 深度图方差    for ( int index=1; index<color_image_files.size(); index++ )    {        cout<<"*** loop "<<index<<" ***"<<endl;        Mat curr = imread( color_image_files[index], 0 );        if (curr.data == nullptr) continue;        SE3 pose_curr_TWC = poses_TWC[index];        SE3 pose_T_C_R = pose_curr_TWC.inverse() * pose_ref_TWC; // 坐标转换关系: T_C_W * T_W_R = T_C_R        update( ref, curr, pose_T_C_R, depth, depth_cov );        plotDepth( depth );        imshow("image", curr);        waitKey(1);    }    cout<<"estimation returns, saving depth map ..."<<endl;    imwrite( "depth.png", depth );    cout<<"done."<<endl;    return 0;}bool readDatasetFiles(    const string& path,    vector< string >& color_image_files,    std::vector<SE3>& poses){    ifstream fin( path+"/first_200_frames_traj_over_table_input_sequence.txt");    if ( !fin ) return false;    while ( !fin.eof() )    {    // 数据格式:图像文件名 tx, ty, tz, qx, qy, qz, qw ,注意是 TWC 而非 TCW        string image;        fin>>image;        double data[7];        for ( double& d:data ) fin>>d;        color_image_files.push_back( path+string("/images/")+image );        poses.push_back(            SE3( Quaterniond(data[6], data[3], data[4], data[5]),                 Vector3d(data[0], data[1], data[2]))        );        if ( !fin.good() ) break;    }    return true;}// 对整个深度图进行更新bool update(const Mat& ref, const Mat& curr, const SE3& T_C_R, Mat& depth, Mat& depth_cov ){#pragma omp parallel for    for ( int x=boarder; x<width-boarder; x++ )#pragma omp parallel for        for ( int y=boarder; y<height-boarder; y++ )        {      // 遍历每个像素            if ( depth_cov.ptr<double>(y)[x] < min_cov || depth_cov.ptr<double>(y)[x] > max_cov ) // 深度已收敛或发散                continue;            // 在极线上搜索 (x,y) 的匹配            Vector2d pt_curr;            bool ret = epipolarSearch (                ref,                curr,                T_C_R,                Vector2d(x,y),                depth.ptr<double>(y)[x],                sqrt(depth_cov.ptr<double>(y)[x]),                pt_curr            );            if ( ret == false ) // 匹配失败                continue;      // 取消该注释以显示匹配            // showEpipolarMatch( ref, curr, Vector2d(x,y), pt_curr );            // 匹配成功,更新深度图            updateDepthFilter( Vector2d(x,y), pt_curr, T_C_R, depth, depth_cov );        }}// 极线搜索bool epipolarSearch(    const Mat& ref, const Mat& curr,    const SE3& T_C_R, const Vector2d& pt_ref,    const double& depth_mu, const double& depth_cov,    Vector2d& pt_curr ){    Vector3d f_ref = px2cam( pt_ref );    f_ref.normalize();    Vector3d P_ref = f_ref*depth_mu;    // 参考帧的 P 向量    Vector2d px_mean_curr = cam2px( T_C_R*P_ref ); // 按深度均值投影的像素    double d_min = depth_mu-3*depth_cov, d_max = depth_mu+3*depth_cov;    if ( d_min<0.1 ) d_min = 0.1;    Vector2d px_min_curr = cam2px( T_C_R*(f_ref*d_min) );   // 按最小深度投影的像素    Vector2d px_max_curr = cam2px( T_C_R*(f_ref*d_max) );   // 按最大深度投影的像素    Vector2d epipolar_line = px_max_curr - px_min_curr; // 极线(线段形式)    Vector2d epipolar_direction = epipolar_line;        // 极线方向    epipolar_direction.normalize();    double half_length = 0.5*epipolar_line.norm();  // 极线线段的半长度    if ( half_length>100 ) half_length = 100;   // 我们不希望搜索太多东西  // 取消此句注释以显示极线(线段)    // showEpipolarLine( ref, curr, pt_ref, px_min_curr, px_max_curr );    // 在极线上搜索,以深度均值点为中心,左右各取半长度    double best_ncc = -1.0;    Vector2d best_px_curr;    for ( double l=-half_length; l<=half_length; l+=0.7 )  // l+=sqrt(2)    {        Vector2d px_curr = px_mean_curr + l*epipolar_direction;  // 待匹配点        if ( !inside(px_curr) )            continue;        // 计算待匹配点与参考帧的 NCC        double ncc = NCC( ref, curr, pt_ref, px_curr );        if ( ncc>best_ncc )        {            best_ncc = ncc;            best_px_curr = px_curr;        }    }    if ( best_ncc < 0.85f )      // 只相信 NCC 很高的匹配        return false;    pt_curr = best_px_curr;    return true;}double NCC (    const Mat& ref, const Mat& curr,    const Vector2d& pt_ref, const Vector2d& pt_curr){    // 零均值-归一化互相关    // 先算均值    double mean_ref = 0, mean_curr = 0;    vector<double> values_ref, values_curr; // 参考帧和当前帧的均值    for ( int x=-ncc_window_size; x<=ncc_window_size; x++ )        for ( int y=-ncc_window_size; y<=ncc_window_size; y++ )        {            double value_ref = double(ref.ptr<uchar>( int(y+pt_ref(1,0)) )[ int(x+pt_ref(0,0)) ])/255.0;            mean_ref += value_ref;            double value_curr = getBilinearInterpolatedValue( curr, pt_curr+Vector2d(x,y) );            mean_curr += value_curr;            values_ref.push_back(value_ref);            values_curr.push_back(value_curr);        }    mean_ref /= ncc_area;    mean_curr /= ncc_area;  // 计算 Zero mean NCC    double numerator = 0, demoniator1 = 0, demoniator2 = 0;    for ( int i=0; i<values_ref.size(); i++ )    {        double n = (values_ref[i]-mean_ref) * (values_curr[i]-mean_curr);        numerator += n;        demoniator1 += (values_ref[i]-mean_ref)*(values_ref[i]-mean_ref);        demoniator2 += (values_curr[i]-mean_curr)*(values_curr[i]-mean_curr);    }    return numerator / sqrt( demoniator1*demoniator2+1e-10 );   // 防止分母出现零}bool updateDepthFilter(    const Vector2d& pt_ref,    const Vector2d& pt_curr,    const SE3& T_C_R,    Mat& depth,    Mat& depth_cov){    // 我是一只喵    // 不知道这段还有没有人看    // 用三角化计算深度    SE3 T_R_C = T_C_R.inverse();    Vector3d f_ref = px2cam( pt_ref );    f_ref.normalize();    Vector3d f_curr = px2cam( pt_curr );    f_curr.normalize();    // 方程    // d_ref * f_ref = d_cur * ( R_RC * f_cur ) + t_RC    // => [ f_ref^T f_ref, -f_ref^T f_cur ] [d_ref] = [f_ref^T t]    //    [ f_cur^T f_ref, -f_cur^T f_cur ] [d_cur] = [f_cur^T t]    // 二阶方程用克莱默法则求解并解之    Vector3d t = T_R_C.translation();    Vector3d f2 = T_R_C.rotation_matrix() * f_curr;    Vector2d b = Vector2d ( t.dot ( f_ref ), t.dot ( f2 ) );    double A[4];    A[0] = f_ref.dot ( f_ref );    A[2] = f_ref.dot ( f2 );    A[1] = -A[2];    A[3] = - f2.dot ( f2 );    double d = A[0]*A[3]-A[1]*A[2];    Vector2d lambdavec =        Vector2d (  A[3] * b ( 0,0 ) - A[1] * b ( 1,0 ),                    -A[2] * b ( 0,0 ) + A[0] * b ( 1,0 )) /d;    Vector3d xm = lambdavec ( 0,0 ) * f_ref;    Vector3d xn = t + lambdavec ( 1,0 ) * f2;    Vector3d d_esti = ( xm+xn ) / 2.0;  // 三角化算得的深度向量    double depth_estimation = d_esti.norm();   // 深度值    // 计算不确定性(以一个像素为误差)    Vector3d p = f_ref*depth_estimation;    Vector3d a = p - t;    double t_norm = t.norm();    double a_norm = a.norm();    double alpha = acos( f_ref.dot(t)/t_norm );    double beta = acos( -a.dot(t)/(a_norm*t_norm));    double beta_prime = beta + atan(1/fx);    double gamma = M_PI - alpha - beta_prime;    double p_prime = t_norm * sin(beta_prime) / sin(gamma);    double d_cov = p_prime - depth_estimation;    double d_cov2 = d_cov*d_cov;    // 高斯融合    double mu = depth.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ];    double sigma2 = depth_cov.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ];    double mu_fuse = (d_cov2*mu+sigma2*depth_estimation) / ( sigma2+d_cov2);    double sigma_fuse2 = ( sigma2 * d_cov2 ) / ( sigma2 + d_cov2 );    depth.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ] = mu_fuse;    depth_cov.ptr<double>( int(pt_ref(1,0)) )[ int(pt_ref(0,0)) ] = sigma_fuse2;    return true;}bool plotDepth(const Mat& depth){    imshow( "depth", depth*0.4 );    waitKey(1);}

Cmakelist 文件如下所示:

cmake_minimum_required(VERSION 2.8.3)project(dense_mapping)set(CMAKE_CXX_FLAGS "-std=c++11 -march=native -O3 -fopenmp")set(OpenCV_DIR /usr/local/opencv320/share/OpenCV)#set(Sophus_LIBRARIES libSophus.so)find_package(OpenCV 3.2 REQUIRED )include_directories(SYSTEM ${OpenCV_INCLUDE_DIRS} /usr/local/opencv320/include)find_package( "/usr/local/opencv320/include/opencv2" )## System dependencies are found with CMake's conventions# find_package(Boost REQUIRED COMPONENTS system)find_package(Eigen3 REQUIRED)include_directories(${EIGEN3_INCLUDE_DIR})set( Sophus_INCLUDE_DIRS "/usr/local/include" )set( Sophus_LIBS "/usr/local/lib/libSophus.so" )include_directories(include)include_directories(  ${catkin_INCLUDE_DIRS}  ${OpenCV_INCLUDE_DIRS}  ${Sophus_LIBS})add_executable(dense_mapping src/dense_mapping.cpp)target_link_libraries(dense_mapping  ${catkin_LIBRARIES}  ${OpenCV_LIBRARIES}  ${EIGEN3_INCLUDE_DIR}   ${Sophus_LIBS})

以上程序较为复杂,其运算的结果如下:

这里写图片描述

通过不断的循环我们可以不断的更新其相片的深度值.

原创粉丝点击