mongo数据库索引原理

来源:互联网 发布:王菲现场知乎 编辑:程序博客网 时间:2024/06/03 19:40

一、索引的本质

索引(Index)是帮助数据库高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。

现在的数据库(mongo,mysql等)索引多采用B-Tree数据结构,不懂BTree的同学先自行去了解下,个人觉得这篇文章比较易懂一些,http://www.cnblogs.com/coder2012/p/5309197.html

为什么使用B-Tree(B+Tree)

红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构,这一节将结合计算机组成原理相关知识讨论B-/+Tree作为索引的理论基础。

一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储在 磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。

主存存取原理

目前计算机使用的主存基本都是随机读写存储器(RAM),现代RAM的结构和存取原理比较复杂,这里本文抛却具体差别,抽象出一个十分简单的存取模型来说明RAM的工作原理。

MySQL索引背后的数据结构及算法原理

图5

从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。图5展示了一个4 x 4的主存模型。

主存的存取过程如下:

当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。

写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。

这里可以看出,主存存取的时间仅与存取次数呈线性关系,因为不存在机械操作,两次存取的数据的“距离”不会对时间有任何影响,例如,先取A0再取A1和先取A0再取D3的时间消耗是一样的。

磁盘存取原理

上文说过,索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。

图6是磁盘的整体结构示意图。

MySQL索引背后的数据结构及算法原理

图6

一个磁盘由大小相同且同轴的圆形盘片组成,磁盘可以转动(各个磁盘必须同步转动)。在磁盘的一侧有磁头支架,磁头支架固定了一组磁头,每个磁头负责存取一个磁盘的内容。磁头不能转动,但是可以沿磁盘半径方向运动(实际是斜切向运动),每个磁头同一时刻也必须是同轴的,即从正上方向下看,所有磁头任何时候都是重叠的(不过目前已经有多磁头独立技术,可不受此限制)。

图7是磁盘结构的示意图。

MySQL索引背后的数据结构及算法原理

图7

盘片被划分成一系列同心环,圆心是盘片中心,每个同心环叫做一个磁道,所有半径相同的磁道组成一个柱面。磁道被沿半径线划分成一个个小的段,每个段叫做一个扇区,每个扇区是磁盘的最小存储单元。为了简单起见,我们下面假设磁盘只有一个盘片和一个磁头。

当需要从磁盘读取数据时,系统会将数据逻辑地址传给磁盘,磁盘的控制电路按照寻址逻辑将逻辑地址翻译成物理地址,即确定要读的数据在哪个磁道,哪个扇区。为了读取这个扇区的数据,需要将磁头放到这个扇区上方,为了实现这一点,磁头需要移动对准相应磁道,这个过程叫做寻道,所耗费时间叫做寻道时间,然后磁盘旋转将目标扇区旋转到磁头下,这个过程耗费的时间叫做旋转时间。

局部性原理与磁盘预读

由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用。

程序运行期间所需要的数据通常比较集中。

由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。

预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。

B-/+Tree索引的性能分析

到这里终于可以分析B-/+Tree索引的性能了。

上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h(h为数高)个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:

每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。

综上所述,用B-Tree作为索引结构效率是非常高的。

而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

B+Tree更适合外存索引,原因和内节点出度d有关。从上面分析可以看到,d越大索引的性能越好,而出度的上限取决于节点内key和data的大小:

dmax = floor(pagesize / (keysize + datasize + pointsize))   (pagesize – dmax >= pointsize)

dmax = floor(pagesize / (keysize + datasize + pointsize)) – 1   (pagesize – dmax < pointsize)

floor表示向下取整。由于B+Tree内节点去掉了data域,因此可以拥有更大的出度,拥有更好的性能。

二、mongo中的索引

为什么需要索引?

当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql)。

mongo-9552:PRIMARY&gt; db.person.find(){ "_id" : ObjectId("571b5da31b0d530a03b3ce82"), "name" : "jack", "age" : 19 }{ "_id" : ObjectId("571b5dae1b0d530a03b3ce83"), "name" : "rose", "age" : 20 }{ "_id" : ObjectId("571b5db81b0d530a03b3ce84"), "name" : "jack", "age" : 18 }{ "_id" : ObjectId("571b5dc21b0d530a03b3ce85"), "name" : "tony", "age" : 21 }{ "_id" : ObjectId("571b5dc21b0d530a03b3ce86"), "name" : "adam", "age" : 18 }

当你往某各个集合插入多个文档后,每个文档在经过底层的存储引擎持久化后,会有一个位置信息,通过这个位置信息,就能从存储引擎里读出该文档。比如mmapv1引擎里,位置信息是『文件id + 文件内offset 』, 在wiredtiger存储引擎(一个KV存储引擎)里,位置信息是wiredtiger在存储文档时生成的一个key,通过这个key能访问到对应的文档;为方便介绍,统一用pos(position的缩写)来代表位置信息。

比如上面的例子里,person集合里包含插入了4个文档,假设其存储后位置信息如下(为方便描述,文档省去_id字段)

位置信息文档pos1{“name” : “jack”, “age” : 19 }pos2{“name” : “rose”, “age” : 20 }pos3{“name” : “jack”, “age” : 18 }pos4{“name” : “tony”, “age” : 21}pos5{“name” : “adam”, “age” : 18}

假设现在有个查询 db.person.find( {age: 18} ), 查询所有年龄为18岁的人,这时需要遍历所有的文档(『全表扫描』),根据位置信息读出文档,对比age字段是否为18。当然如果只有4个文档,全表扫描的开销并不大,但如果集合文档数量到百万、甚至千万上亿的时候,对集合进行全表扫描开销是非常大的,一个查询耗费数十秒甚至几分钟都有可能。

如果想加速 db.person.find( {age: 18} ),就可以考虑对person表的age字段建立索引。

db.person.createIndex( {age: 1} )  // 按age字段创建升序索引

建立索引后,MongoDB会额外存储一份按age字段升序排序的索引数据,索引结构类似如下,索引通常采用类似btree的结构持久化存储,以保证从索引里快速(O(logN)的时间复杂度)找出某个age值对应的位置信息,然后根据位置信息就能读取出对应的文档。

AGE位置信息18pos318pos519pos120pos221pos4

简单的说,索引就是将文档按照某个(或某些)字段顺序组织起来,以便能根据该字段高效的查询。有了索引,至少能优化如下场景的效率:

  • 查询,比如查询年龄为18的所有人
  • 更新/删除,将年龄为18的所有人的信息更新或删除,因为更新或删除时,需要根据条件先查询出所有符合条件的文档,所以本质上还是在优化查询
  • 排序,将所有人的信息按年龄排序,如果没有索引,需要全表扫描文档,然后再对扫描的结果进行排序

众所周知,MongoDB默认会为插入的文档生成_id字段(如果应用本身没有指定该字段),_id是文档唯一的标识,为了保证能根据文档id快递查询文档,MongoDB默认会为集合创建_id字段的索引。

mongo-9552:PRIMARY&gt; db.person.getIndexes() // 查询集合的索引信息[    {        "ns" : "test.person",  // 集合名        "v" : 1,               // 索引版本        "key" : {              // 索引的字段及排序方向            "_id" : 1           // 根据_id字段升序索引        },        "name" : "_id_"        // 索引的名称    }]

MongoDB索引类型

MongoDB支持多种类型的索引,包括单字段索引、复合索引、多key索引、文本索引等,每种类型的索引有不同的使用场合。

单字段索引 (Single Field Index)

    db.person.createIndex( {age: 1} ) 

上述语句针对age创建了单字段索引,其能加速对age字段的各种查询请求,是最常见的索引形式,MongoDB默认创建的id索引也是这种类型。

{age: 1} 代表升序索引,也可以通过{age: -1}来指定降序索引,对于单字段索引,升序/降序效果是一样的。

复合索引 (Compound Index)

复合索引是Single Field Index的升级版本,它针对多个字段联合创建索引,先按第一个字段排序,第一个字段相同的文档按第二个字段排序,依次类推,如下针对age, name这2个字段创建一个复合索引。

    db.person.createIndex( {age: 1, name: 1} ) 

上述索引对应的数据组织类似下表,与{age: 1}索引不同的时,当age字段相同时,在根据name字段进行排序,所以pos5对应的文档排在pos3之前。

AGE,NAME位置信息18,adampos518,jackpos319,jackpos120,rosepos221,tonypos4

复合索引能满足的查询场景比单字段索引更丰富,不光能满足多个字段组合起来的查询,比如db.person.find( {age: 18, name: "jack"} ),也能满足所以能匹配符合索引前缀的查询,这里{age: 1}即为{age: 1, name: 1}的前缀,所以类似db.person.find( {age: 18} )的查询也能通过该索引来加速;但db.person.find( {name: "jack"} )则无法使用该复合索引。如果经常需要根据『name字段』以及『name和age字段组合』来查询,则应该创建如下的复合索引

db.person.createIndex( {name: 1, age: 1} ) 

除了查询的需求能够影响索引的顺序,字段的值分布也是一个重要的考量因素,即使person集合所有的查询都是『name和age字段组合』(指定特定的name和age),字段的顺序也是有影响的。

age字段的取值很有限,即拥有相同age字段的文档会有很多;而name字段的取值则丰富很多,拥有相同name字段的文档很少;显然先按name字段查找,再在相同name的文档里查找age字段更为高效。

多key索引 (Multikey Index)

当索引的字段为数组时,创建出的索引称为多key索引,多key索引会为数组的每个元素建立一条索引,比如person表加入一个habbit字段(数组)用于描述兴趣爱好,需要查询有相同兴趣爱好的人就可以利用habbit字段的多key索引。

{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}db.person.createIndex( {habbit: 1} )  // 自动创建多key索引db.person.find( {habbit: "football"} )

其他类型索引

哈希索引(Hashed Index)是指按照某个字段的hash值来建立索引,目前主要用于MongoDB Sharded Cluster的Hash分片,hash索引只能满足字段完全匹配的查询,不能满足范围查询等。

地理位置索引(Geospatial Index)能很好的解决O2O的应用场景,比如『查找附近的美食』、『查找某个区域内的车站』等。

文本索引(Text Index)能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。

索引额外属性

MongoDB除了支持多种不同类型的索引,还能对索引定制一些特殊的属性。

  • 唯一索引 (unique index):保证索引对应的字段不会出现相同的值,比如_id索引就是唯一索引
  • TTL索引:可以针对某个时间字段,指定文档的过期时间(经过指定时间后过期 或 在某个时间点过期)
  • 部分索引 (partial index): 只针对符合某个特定条件的文档建立索引,3.2版本才支持该特性
  • 稀疏索引(sparse index): 只针对存在索引字段的文档建立索引,可看做是部分索引的一种特殊情况

查询计划

索引已经建立了,但查询还是很慢怎么破?这时就得深入的分析下索引的使用情况了,可通过查看下详细的查询计划来决定如何优化。通过执行计划可以看出如下问题

  1. 根据某个/些字段查询,但没有建立索引
  2. 根据某个/些字段查询,但建立了多个索引,执行查询时没有使用预期的索引。

建立索引前,db.person.find( {age: 18} )必须执行COLLSCAN,即全表扫描。

mongo-9552:PRIMARY&gt; db.person.find({age: 18}).explain(){    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.person",        "indexFilterSet" : false,        "parsedQuery" : {            "age" : {                "$eq" : 18            }        },        "winningPlan" : {            "stage" : "COLLSCAN",            "filter" : {                "age" : {                    "$eq" : 18                }            },            "direction" : "forward"        },        "rejectedPlans" : [ ]    },    "serverInfo" : {        "host" : "localhost",        "port" : 9552,        "version" : "3.2.3",        "gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"    },    "ok" : 1}

建立索引后,通过查询计划可以看出,先进行[IXSCAN]((https://docs.mongodb.org/manual/reference/explain-results/#queryplanner)(从索引中查找),然后FETCH,读取出满足条件的文档。

mongo-9552:PRIMARY&gt; db.person.find({age: 18}).explain(){    "queryPlanner" : {        "plannerVersion" : 1,        "namespace" : "test.person",        "indexFilterSet" : false,        "parsedQuery" : {            "age" : {                "$eq" : 18            }        },        "winningPlan" : {            "stage" : "FETCH",            "inputStage" : {                "stage" : "IXSCAN",                "keyPattern" : {                    "age" : 1                },                "indexName" : "age_1",                "isMultiKey" : false,                "isUnique" : false,                "isSparse" : false,                "isPartial" : false,                "indexVersion" : 1,                "direction" : "forward",                "indexBounds" : {                    "age" : [                        "[18.0, 18.0]"                    ]                }            }        },        "rejectedPlans" : [ ]    },    "serverInfo" : {        "host" : "localhost",        "port" : 9552,        "version" : "3.2.3",        "gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"    },    "ok" : 1}

三、注意事项

既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,数据库在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。

第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:

Index Selectivity = Cardinality / #T

常见慢查询:

1.不等于和不包含查询

2.通配符在前面的模糊查询, like '%xxx'

3.无索引的count 查询 和 排序(复合索引顺序不匹配)

4.多个范围查询(范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引

5.skip跳过过多的行数(优化方案:我们第一页可以用db.article.find().limit(articles_of_each_page),并记录最后一片文章的_id(或者其他排序值),之后查询db.article.find({_id:{$lt:_id_stored}}).limit(articles_of_each_page)来查找下一页或者类似的,上一页的文章,可以避免大量计数.

四、正确建立索引

在没有建立索引的情况下,对Mongodb数据表进行查询操作的时候,需要把数据都加载到内存。当数据的数量达到几十万乃至上百万的时候,这样的加载过程会对系统造成较大的冲击,并影响到其他请求的处理过程。

索引是对数据库表中一列或多列的值进行排序的一种结构,建立索引以后,对索引字段进行查询时,仅会加载索引数据,并能提高查询速度。

1、建立合适的索引

为每一个查询建立合适的索引。

组合索引是创建的索引由多个字段组成,例如:

db.test.ensureIndex({"username":1, "age":-1}) #1是按升序排列,-1是按降序排列 

交叉索引是每个字段单独建立索引,但是在查询的时候组合查找,例如:

db.test.ensureIndex({"username":1}) db.test.ensureIndex({"age":-1}) db.test.find({"username":"kaka", "age": 30}) 

交叉索引的查询效率较低,在使用时,当查询使用到多个字段的时候,尽量使用组合索引,而不是交叉索引。

2、组合索引的字段排列顺序

当我们的组合索引内容包含匹配条件以及范围条件的时候,比如包含用户名(匹配条件)以及年龄(范围条件),那么匹配条件应该放在范围条件之前。

比如需要查询:

db.test.find({"username":"kaka", "age": {$gt: 10}}) 

那么组合索引应该这样创建:

db.test.ensureIndex({"username":1, "age":-1}) 

3、查询时尽可能仅查询出索引字段

有时候仅需要查询少部分的字段内容,而且这部分内容刚好都建立了索引,那么尽可能只查询出这些索引内容,需要用到的字段显式声明(_id字段需要显式忽略!)。因为这些数据需要把原始数据文档从磁盘读入内存,造成一定的损耗。

比如说我们的表有三个字段:

username, age, mobile 

索引是这样建立的:

db.test.ensureIndex({"username":1,"age":-1}) 

我们仅需要查到某个用户的年龄(age),那可以这样写:

db.test.find({"username":"kaka"}, {"_id":0, "age":1}) 

注意到上面的语句,我们除了”age”:1外,还加了”_id”:0,因为默认情况下,_id都是会被一并查询出来的,当不需要_id的时候记得直接忽略,避免不必要的磁盘操作。

4、对现有的数据大表建立索引的时候,采用后台运行方式

在对数据集合建立索引的过程中,数据库会停止该集合的所有读写操作,因此如果建立索引的数据量大,建立过程慢的情况下,建议采用后台运行的方式,避免影响正常业务流程。

db.test.ensureIndex({"username":1,"age":-1},{"background":true}) #默认情况下background是false。


参考文章 

索引的本质部分参考:http://blog.jobbole.com/24006/

mongo中的索引部分参考:http://www.mongoing.com/archives/2797

B-Tree数据结构:http://www.cnblogs.com/coder2012/p/5309197.html

原创粉丝点击