隔离光耦驱动 IGBT 或 Power MOSFE 常见问题

来源:互联网 发布:淘宝站外推广怎么做 编辑:程序博客网 时间:2024/06/06 05:01
内容介绍:功率器件,如 IGBT,Power MOSFET 和 Bipolar Power Transistor 等等,都需要有充分的保护,以避免如欠压,缺失饱和,米勒效应,过载,短路等条件所造成的损害。本在线研讨会介绍了为何光耦栅极驱动器能被广泛的接受和使用,这不仅是因其所具有的高输出电流驱动能力,及开关速度快等长处之外,更重要的,它也具有保护功率器件的所需功能。这些功率器件的保护功能包括欠压锁定(UVLO),DESAT检测,和有源米勒钳位。在电力转换器,电机驱动,太阳能和风力发电等系统的应用上,所有这些保护功能都是重要的,因它确保这些系统能安全和稳定的操作。另外,能把握如何正确的选用,设计这些光耦栅极驱动器来有效的使用/控制这些功能使到整个系统更简单,高效,可靠,是系统设计工程师不可或缺的技能

一、请问:专家可否介绍一下 ACPL-330J、ACPL-C79A 绝缘放大器的放大特性,频率特性以及绝缘特性

1、CTR的放大特性 --- ACPL-330J 和 ACPL-C79A 都没有CTR的放大特性。虽然所有栅极驱动光耦合器的输入端均有一个 LED 及隔离输出端均有一个光学探测器, 其操作功能却与 CTR 无关紧要,因为它们是靠数字信号格式下运作的。作为探测器如其可以检测到 LED 是否处于 ON 或 OFF 状态,其输出将反映相应的功能。例如 ACPL-332J 的情况,它的功能是利用 PWM 输入信号来造成输出端输出同的 PWM 信号,进而数字化驱动 IGBT 或 Power Mosfet。它虽也具有特定缓冲驱动能力, 但与 CTR 完全无关。 同样的在 ACPL-C79A 的情况下,它是一个电流感测器,它的功能是把输入电流信息以数字化(Σ-Δ)编码,然后以模拟型式 把所代表的输入电流波形以放大倍数电流波形(无关于CTR)发出到输出端。
2、频率特性--- ACPL-330J 适用于在 30kHz、40kHz 的频率上驱动 IGBT 或 Power Mosfet (如 所需的峰值电流<1.5A规定电流)。 ACPL-C79A 是适用于带宽高达 200kHz 的典型电流感应。
3、绝缘特性--- ACPL-330J 和 ACPL-C79A 均能满足依据 IEC60747-5-5 的安规所规定的超强绝缘性能。

二、光耦端的控制电流与功率管输出驱动电流之比是用什么指标表示,其最大值是多少?

全部栅极驱动光耦合器都没有 CTR 的放大特性。虽然所有栅极驱动光耦合器的输入端均有一个 LED 及隔离输出端均有一个光学探测器,其操作功能却与 CTR 无关紧要,因为它们是靠数字信号格式下运作的。作为探测器如其可以检测到 LED 是否处于 ON 或 OFF 状态,其输出将反映相应的功能。例如 ACPL-332J 的情况 - 它的功能是利用 PWM 输入信号来造成输出端输出同一 PWM 信号,进而数字化驱动 IGBT 或 Power Mosfet。它虽也具有特定缓冲驱动能力,但与 CTR 完全无关。 ACPL-332J 是能够驱动高达 2.5A 电流的栅极驱动光耦合器。

三、安华的光电耦合器都是采用 DIP-8 封装吗?业界经常提到 DIP-8 封装,这种封装方式有何优点?

Avago 光耦合器有许多不同类型的封装,它们包括 500-MIL DIP10,400-MIL DIP8,300-MIL DIP8,SO16,SO8,SS08,SO6,SS06,SO5,和 SO4 等等。 每个封装都有其自身的特点 - 如不同的爬电距离和间隙,以配合不同的应用。

四、为什么要通过光耦合的方式来驱动功率管的栅极? 为何不能设计合适的驱动电路直接驱动栅极?各种保护功能在普通的驱动电路里不能实现吗? 增加光耦合是否也增加了一个产生可靠性问题的环节?

通过使用光耦栅极驱动器驱动功率器件,可以帮助消除4个基本问题,即瞬态电压、共模噪声、接地回路和电平转换。这4个基本问题不能轻易通过简单的非隔离式栅极驱动器得到解决。集成的栅极驱动器如安华高的 ACPL-33xJ, 结合了各种保护功能于简单的集成电路里。
集成电路的好处是, 它能做到设备到设备(或元件到元件)间均非常均匀。这些保护功能,都可以通过分立器件来实现,但分立器件将无法很均匀地,从系统到系统间工作,另外分立器件将造成更复杂的设计,不能达到简化的作用。所有 Avago 的光耦合器都经过精心设计,以确保其可靠性不受到损伤。

五、有哪些低功耗的 IC 适合构建高效的适合光伏、风能应用的控制、逆变系统?

所有安华高的隔离栅极驱动器都能在极低 ICC2 电流中运作,这可有效减少功率消耗和在高侧驱动允许使用自举电源。另外,安华高最新的栅极驱动器,如 ACPL-P/W34x 能够在最高 200ns这么低的传播延迟时间里工作 这允许更精确的 PWM 控制,同时提高效率。所有这些优势都使安华高的隔离栅极驱动器能够适用于, 如光伏逆变器和其他可再生能源转换系统中应用。
六、请问:为什么新设计的 DESAT 只有7V,IGBT 极易误触发, desat 故障后,故障未复位前 VCC2-VE 维持1个10mA左右的故障反馈光耦驱动电流,在采用稳压管正负电源分压方案中,易导致负电压偏高。影响分压比例。

在正确的选择下 IGBT 和 MOSFET 的饱和电压通常约为 1.5V 和 3V。所以 7V 的阈值通常是足够的,因为它在退饱和作用下提供了超过 4V 的边距电压。 当然在市场上也有一些 IGBT 和 MOSFET 饱和电压略高或在一些大的散热器下允许饱和度较高的检测阈值的功率器件。但设计者可以通过简单的插入比较器来提高 DESAT 阈值。 是的,LED 的10mA驱动电流在故障条件下是真正必要的。 使用高LED故障电流的原因是,它允许在故障条件下能有更好的噪声抑制。

七、退饱和检测是什么意思,检测的是哪一个点的电压?

DESAT 是 IGBT 过流或短路故障发生时,可以检测到的情况。在过流或短路故障发生时,IGBT 的集电极电压(或PowerMosfet的漏电极电压)会迅速爬升,这种电压爬升情况可以通过安华高集成栅极驱动器的DESAT引脚检测到。

八、加入耦合隔离器后会不会出现信号的延迟?通过什么办法解决?

通过使用光耦栅极驱动器驱动功率器件,可以帮助消除4个基本问题,如1)瞬态电压,2)共模噪声,3)接地回路,和4)电平转换。这4个基本问题不能轻易/圆满通过简单的非隔离式栅极驱动器得到解决。但加入光耦确实会引入信号传播延迟时间,并导致在网络研讨会中提到的死区时间。 不过在市场中安华高栅极驱动光耦合器的死区时间是最低的,这有助于减少在怠速状态下容易失去的效率。

九、以前我们在电机软起动器上用光耦加 SCR 的方案,如果改为 Avago 隔离 IGBT 的方案,需要考虑哪些环节?

在电机起动系统里比较 IGBT 控制对可控硅 SCR 控制的优势,前者较易关闭及允许更快的开关操作,但需要考量的是,设计师必须确保IGBT的体二极管能够完全处理在关闭时产生的再生电流。

十、HCPL-316J 产品如何做到短路时软关断?谢谢!

HCPL-316J 饱和阈值的顶点设置在 7V,这是对通过一个比较实际的 IGBT Vce 饱和电压相比。操作时的DESAT保护有2个部分,1)I GBT的Vce电压检测和比较, 2)一旦越过阈值水平就激活DESAT保护; 1)检测部分,它仅在IGBT导通期间激活。 在IGBT关断期间,有个微小的晶体管是导通的以把DESAT电容放电到0V。 当IGBT导通后, 那微小的晶体管被立即??关闭,让250uA恒流,以充电电容,和/或直接流到IGBT,这取决于那个路径是处于较低电压路径。 因此,如果IGBT的开启和负载配合的饱和点在2V,恒定电流会流入DESAT电容,直到它到达2.7V,并从那时起,恒定电流将流经DESAT二极管(造成0.7V压降),并通过导通的IGBT。作为DESAT电容的电压只有2.7V,这仍然是比7V DESAT阈值设置低,保护电路将不会被激活。 但是,当发生过载或短路,VCE饱和电压将立即爬升,到如8V,因超过7V第二个部分就开始。恒定电流将继续充电DESAT电容到超过7V。由于DESAT电容电平跨越了7V DESAT门槛,比较器的输出被激活,保护电路也被激活。结果是故障信号,会通过光通道发送到故障引脚并把那个故障引脚电平拉低,以通知了解故障的MCU / DSP。在同一时间,那1X小粒晶体管会导通,把IGBT的栅极电平 通过RG电阻来放电。由于这种晶体管比实际关断晶体管更小约50倍, IGBT栅极电压将被逐步放电导致所谓的软关机。 Avago的应用笔记 AN5324提供更详细的软关断描述。