TensorBoard:可视化学习

来源:互联网 发布:网络信息安全现状 编辑:程序博客网 时间:2024/06/07 10:53

TensorBoard:可视化学习

您使用TensorFlow的计算 - 像训练一个巨大的深层神经网络 - 可能是复杂和混乱的。为了更容易理解,调试和优化TensorFlow程序,我们提供了一套名为TensorBoard的可视化工具。您可以使用TensorBoard可视化您的TensorFlow图形,绘制关于图形执行的定量指标,并显示其他数据,如通过它的图像。当TensorBoard完全配置后,它看起来像这样:

MNIST TensorBoard

本教程旨在让您开始使用简单的TensorBoard用法。还有其他资源可用!TensorBoard README 对TensorBoard使用了大量的信息,包括提示和技巧,和调试信息。

序列化数据

TensorBoard通过读取TensorFlow事件文件来操作,该文件包含在运行TensorFlow时可以生成的摘要数据。以下是TensorBoard中摘要数据的一般生命周期。

首先,创建要收集摘要数据的TensorFlow图,并确定要使用汇总操作注释哪些节点 

例如,假设您正在训练用于识别MNIST数字的卷积神经网络。您想记录学习速度随时间变化的方式,以及目标函数的变化。通过将tf.summary.scalar操作附加到分别输出学习速率和丢失的节点来收集这些数据然后,给每scalar_summary一个有意义的tag,喜欢'learning rate''loss function'

也许您也希望可视化特定层次的激活分布,或梯度或重量的分布。通过将tf.summary.histogram操作附加到渐变输出和分别保存权重的变量来收集此数据 

有关可用的所有摘要操作的详细信息,请查看摘要操作的文档 

TensorFlow中的操作在运行它们之前不执行任何操作,或者取决于其输出的操作。而我们刚刚创建的汇总节点是图形的外围设备:您当前运行的操作不依赖于它们。因此,为了生成摘要,我们需要运行所有这些汇总节点。手工管理它们将是乏味的,所以使用 tf.summary.merge_all 它们将它们组合成一个单一的操作,生成所有的摘要数据。

然后,您可以运行合并的摘要操作,这将Summary在给定步骤中生成一个序列化的protobuf对象,其中 包含所有摘要数据。最后,要将此摘要数据写入磁盘,请将摘要protobuf传递给 tf.summary.FileWriter

FileWriter在其构造需要LOGDIR -这LOGDIR是非常重要的,它是在所有的事件都将被写出的目录。此外,FileWriter可以选择Graph在其构造函数中。如果它接收到一个Graph对象,那么TensorBoard会将您的图形与张量形状信息一起显示。这将使您更好地了解流经图形的内容:请参阅 张量形状信息

现在您已经修改了图表,并且已经FileWriter准备好开始运行网络了!如果需要,您可以每一步运行合并摘要,并记录大量的培训数据。尽管如此,这可能比您需要更多的数据。相反,考虑在n步骤中运行合并的摘要

下面的代码示例是简单的MNIST教程的修改 ,其中我们添加了一些摘要操作,并且每十个步骤运行它们。如果你运行这个然后启动tensorboard --logdir=/tmp/tensorflow/mnist,你将能够可视化的统计数据,比如在训练过程中权重或准确性如何变化。下面的代码是摘录; 全部来源在 这里

def variable_summaries(var):
 
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
 
with tf.name_scope('summaries'):
    mean
= tf.reduce_mean(var)
    tf
.summary.scalar('mean', mean)
   
with tf.name_scope('stddev'):
      stddev
= tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf
.summary.scalar('stddev', stddev)
    tf
.summary.scalar('max', tf.reduce_max(var))
    tf
.summary.scalar('min', tf.reduce_min(var))
    tf
.summary.histogram('histogram', var)

def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
 
"""Reusable code for making a simple neural net layer.

  It does a matrix multiply, bias add, and then uses relu to nonlinearize.
  It also sets up name scoping so that the resultant graph is easy to read,
  and adds a number of summary ops.
  """

 
# Adding a name scope ensures logical grouping of the layers in the graph.
 
with tf.name_scope(layer_name):
   
# This Variable will hold the state of the weights for the layer
   
with tf.name_scope('weights'):
      weights
= weight_variable([input_dim, output_dim])
      variable_summaries
(weights)
   
with tf.name_scope('biases'):
      biases
= bias_variable([output_dim])
      variable_summaries
(biases)
   
with tf.name_scope('Wx_plus_b'):
      preactivate
= tf.matmul(input_tensor, weights) + biases
      tf
.summary.histogram('pre_activations', preactivate)
    activations
= act(preactivate, name='activation')
    tf
.summary.histogram('activations', activations)
   
return activations

hidden1
= nn_layer(x, 784, 500, 'layer1')

with tf.name_scope('dropout'):
  keep_prob
= tf.placeholder(tf.float32)
  tf
.summary.scalar('dropout_keep_probability', keep_prob)
  dropped
= tf.nn.dropout(hidden1, keep_prob)

# Do not apply softmax activation yet, see below.
y
= nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

with tf.name_scope('cross_entropy'):
 
# The raw formulation of cross-entropy,
 
#
 
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
 
#                               reduction_indices=[1]))
 
#
 
# can be numerically unstable.
 
#
 
# So here we use tf.nn.softmax_cross_entropy_with_logits on the
 
# raw outputs of the nn_layer above, and then average across
 
# the batch.
  diff
= tf.nn.softmax_cross_entropy_with_logits(targets=y_, logits=y)
 
with tf.name_scope('total'):
    cross_entropy
= tf.reduce_mean(diff)
tf
.summary.scalar('cross_entropy', cross_entropy)

with tf.name_scope('train'):
  train_step
= tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
      cross_entropy
)

with tf.name_scope('accuracy'):
 
with tf.name_scope('correct_prediction'):
    correct_prediction
= tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
 
with tf.name_scope('accuracy'):
    accuracy
= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf
.summary.scalar('accuracy', accuracy)

# Merge all the summaries and write them out to /tmp/mnist_logs (by default)
merged
= tf.summary.merge_all()
train_writer
= tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                      sess
.graph)
test_writer
= tf.summary.FileWriter(FLAGS.summaries_dir + '/test')
tf
.global_variables_initializer().run()

在我们初始化之后FileWriters,我们必须在FileWriters我们训练和测试模型时添加摘要 

# Train the model, and also write summaries.
# Every 10th step, measure test-set accuracy, and write test summaries
# All other steps, run train_step on training data, & add training summaries

def feed_dict(train):
 
"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
 
if train or FLAGS.fake_data:
    xs
, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
    k
= FLAGS.dropout
 
else:
    xs
, ys = mnist.test.images, mnist.test.labels
    k
= 1.0
 
return {x: xs, y_: ys, keep_prob: k}

for i in range(FLAGS.max_steps):
 
if i % 10 == 0:  # Record summaries and test-set accuracy
    summary
, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
    test_writer
.add_summary(summary, i)
   
print('Accuracy at step %s: %s' % (i, acc))
 
else:  # Record train set summaries, and train
    summary
, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
    train_writer
.add_summary(summary, i)

现在,您可以使用TensorBoard来显示此数据。

启动TensorBoard

要运行TensorBoard,请使用以下命令(可选python -m tensorflow.tensorboard

tensorboard --logdir=path/to/log-directory

其中logdir指向其FileWriter序列化其数据的目录如果此logdir目录包含从单独运行中包含序列化数据的子目录,则TensorBoard将可视化所有这些运行中的数据。一旦TensorBoard运行,浏览您的网页浏览器localhost:6006来查看TensorBoard。

查看TensorBoard时,您会看到右上角的导航标签。每个选项卡表示可以可视化的一组序列化数据。

有关如何使用图形选项卡可视化图形的深入信息,请参阅TensorBoard:图形可视化

有关TensorBoard的更多使用信息,请参阅TensorBoard README