java Hashmap

来源:互联网 发布:acrobat xi mac 破解 编辑:程序博客网 时间:2024/06/05 16:28

HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。

一、定义

      HashMap实现了Map接口,继承AbstractMap。其中Map接口定义了键映射到值的规则,而AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实AbstractMap类已经实现了Map,这里标注Map LZ觉得应该是更加清晰吧!

public class HashMap<K,V>    extends AbstractMap<K,V>    implements Map<K,V>, Cloneable, Serializable

二、构造函数

      HashMap提供了三个构造函数:

      HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。

      HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

      HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。

      在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。

      HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。

三、数据结构

      我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:

HashMap数据结构图

      从上图我们可以看出HashMap底层实现还是数组,只是数组的每一项都是一条链。其中参数initialCapacity就代表了该数组的长度。下面为HashMap构造函数的源码:

public HashMap(int initialCapacity, float loadFactor) {        //初始容量不能<0        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: "                    + initialCapacity);        //初始容量不能 > 最大容量值,HashMap的最大容量值为2^30        if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        //负载因子不能 < 0        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: "                    + loadFactor);        // 计算出大于 initialCapacity 的最小的 2 的 n 次方值。        int capacity = 1;        while (capacity < initialCapacity)            capacity <<= 1;                this.loadFactor = loadFactor;        //设置HashMap的容量极限,当HashMap的容量达到该极限时就会进行扩容操作        threshold = (int) (capacity * loadFactor);        //初始化table数组        table = new Entry[capacity];        init();    }

      从源码中可以看出,每次新建一个HashMap时,都会初始化一个table数组。table数组的元素为Entry节点。

static class Entry<K,V> implements Map.Entry<K,V> {        final K key;        V value;        Entry<K,V> next;        final int hash;        /**         * Creates new entry.         */        Entry(int h, K k, V v, Entry<K,V> n) {            value = v;            next = n;            key = k;            hash = h;        }        .......    }

      其中Entry为HashMap的内部类,它包含了键key、值value、下一个节点next,以及hash值,这是非常重要的,正是由于Entry才构成了table数组的项为链表。

      上面简单分析了HashMap的数据结构,下面将探讨HashMap是如何实现快速存取的。

四、存储实现:put(key,vlaue)

      首先我们先看源码

public V put(K key, V value) {        //当key为null,调用putForNullKey方法,保存null与table第一个位置中,这是HashMap允许为null的原因        if (key == null)            return putForNullKey(value);        //计算key的hash值        int hash = hash(key.hashCode());                  ------(1)        //计算key hash 值在 table 数组中的位置        int i = indexFor(hash, table.length);             ------(2)        //从i出开始迭代 e,找到 key 保存的位置        for (Entry<K, V> e = table[i]; e != null; e = e.next) {            Object k;            //判断该条链上是否有hash值相同的(key相同)            //若存在相同,则直接覆盖value,返回旧value            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {                V oldValue = e.value;    //旧值 = 新值                e.value = value;                e.recordAccess(this);                return oldValue;     //返回旧值            }        }        //修改次数增加1        modCount++;        //将key、value添加至i位置处        addEntry(hash, key, value, i);        return null;    }

      通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,否则将该元素保存在链头(最先保存的元素放在链尾)。若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:

      1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。

      2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。

static int hash(int h) {        h ^= (h >>> 20) ^ (h >>> 12);        return h ^ (h >>> 7) ^ (h >>> 4);    }

      我们知道对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap是这样处理的:调用indexFor方法。

static int indexFor(int h, int length) {        return h & (length-1);    }

      HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length – 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。

      我们回到indexFor方法,该方法仅有一条语句:h&(length – 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。

      这里我们假设length为16(2^n)和15,h为5、6、7。

table1

      当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

table2

      从上面的图表中我们看到总共发生了8此碰撞,同时发现浪费的空间非常大,有1、3、5、7、9、11、13、15处没有记录,也就是没有存放数据。这是因为他们在与14进行&运算时,得到的结果最后一位永远都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。

      这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:

void addEntry(int hash, K key, V value, int bucketIndex) {        //获取bucketIndex处的Entry        Entry<K, V> e = table[bucketIndex];        //将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry         table[bucketIndex] = new Entry<K, V>(hash, key, value, e);        //若HashMap中元素的个数超过极限了,则容量扩大两倍        if (size++ >= threshold)            resize(2 * table.length);    }

      这个方法中有两点需要注意:

      一是链的产生。这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。

      二、扩容问题。

      随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

五、读取实现:get(key)

            相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。

public V get(Object key) {        // 若为null,调用getForNullKey方法返回相对应的value        if (key == null)            return getForNullKey();        // 根据该 key 的 hashCode 值计算它的 hash 码          int hash = hash(key.hashCode());        // 取出 table 数组中指定索引处的值        for (Entry<K, V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {            Object k;            //若搜索的key与查找的key相同,则返回相对应的value            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))                return e.value;        }        return null;    }

     在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。





HashMap 的存储实现


当程序试图将多个 key-value 放入 HashMap 中时,以如下代码片段为例:

[java] view plain copy
  1. HashMap<String , Double> map = new HashMap<String , Double>();   
  2. map.put("语文" , 80.0);   
  3. map.put("数学" , 89.0);   
  4. map.put("英语" , 78.2);   


HashMap 采用一种所谓的“Hash 算法”来决定每个元素的存储位置。 

当程序执行 map.put("语文" , 80.0); 时,系统将调用"语文"的 hashCode() 方法得到其 hashCode 值——每个 Java 对象都有 hashCode() 方法,都可通过该方法获得它的 hashCode 值。得到这个对象的 hashCode 值之后,系统会根据该 hashCode 值来决定该元素的存储位置。 

我们可以看 HashMap 类的 put(K key , V value) 方法的源代码:

[java] view plain copy
  1. public V put(K key, V value)   
  2. {   
  3.  // 如果 key 为 null,调用 putForNullKey 方法进行处理  
  4.  if (key == null)   
  5.      return putForNullKey(value);   
  6.  // 根据 key 的 keyCode 计算 Hash 值  
  7.  int hash = hash(key.hashCode());   
  8.  // 搜索指定 hash 值在对应 table 中的索引  
  9.      int i = indexFor(hash, table.length);  
  10.  // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素  
  11.  for (Entry<K,V> e = table[i]; e != null; e = e.next)   
  12.  {   
  13.      Object k;   
  14.      // 找到指定 key 与需要放入的 key 相等(hash 值相同  
  15.      // 通过 equals 比较放回 true)  
  16.      if (e.hash == hash && ((k = e.key) == key   
  17.          || key.equals(k)))   
  18.      {   
  19.          V oldValue = e.value;   
  20.          e.value = value;   
  21.          e.recordAccess(this);   
  22.          return oldValue;   
  23.      }   
  24.  }   
  25.  // 如果 i 索引处的 Entry 为 null,表明此处还没有 Entry   
  26.  modCount++;   
  27.  // 将 key、value 添加到 i 索引处  
  28.  addEntry(hash, key, value, i);   
  29.  return null;   
  30. }   

上面程序中用到了一个重要的内部接口:Map.Entry,每个 Map.Entry 其实就是一个 key-value 对。从上面程序中可以看出:当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value,仅仅只是根据 key 来计算并决定每个 Entry 的存储位置。这也说明了前面的结论:我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。 

上面方法提供了一个根据 hashCode() 返回值来计算 Hash 码的方法:hash(),这个方法是一个纯粹的数学计算,其方法如下: 

[java] view plain copy
  1. static int hash(int h)   
  2. {   
  3.     h ^= (h >>> 20) ^ (h >>> 12);   
  4.     return h ^ (h >>> 7) ^ (h >>> 4);   
  5. }   

对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 Hash 码值总是相同的。接下来程序会调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

[java] view plain copy
  1. static int indexFor(int h, int length)   
  2. {   
  3.     return h & (length-1);   
  4. }  

这个方法非常巧妙,它总是通过 h &(table.length -1) 来得到该对象的保存位置——而 HashMap 底层数组的长度总是 2 的 n 次方,这一点可参看后面关于 HashMap 构造器的介绍。 

当 length 总是 2 的倍数时,h & (length-1) 将是一个非常巧妙的设计:假设 h=5,length=16, 那么 h & length - 1 将得到 5;如果 h=6,length=16, 那么 h & length - 1 将得到 6 ……如果 h=15,length=16, 那么 h & length - 1 将得到 15;但是当 h=16 时 , length=16 时,那么 h & length - 1 将得到 0 了;当 h=17 时 , length=16 时,那么 h & length - 1 将得到 1 了……这样保证计算得到的索引值总是位于 table 数组的索引之内。 

根据上面 put 方法的源代码可以看出,当程序试图将一个 key-value 对放入 HashMap 中时,程序首先根据该 key 的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry 的 value,但 key 不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链,而且新添加的 Entry 位于 Entry 链的头部——具体说明继续看 addEntry() 方法的说明。 

当向 HashMap 中添加 key-value 对,由其 key 的 hashCode() 返回值决定该 key-value 对(就是 Entry 对象)的存储位置。当两个 Entry 对象的 key 的 hashCode() 返回值相同时,将由 key 通过 eqauls() 比较值决定是采用覆盖行为(返回 true),还是产生 Entry 链(返回 false)。 

上面程序中还调用了 addEntry(hash, key, value, i); 代码,其中 addEntry 是 HashMap 提供的一个包访问权限的方法,该方法仅用于添加一个 key-value 对。下面是该方法的代码: 

[java] view plain copy
  1. void addEntry(int hash, K key, V value, int bucketIndex)   
  2. {   
  3.     // 获取指定 bucketIndex 索引处的 Entry   
  4.     Entry<K,V> e = table[bucketIndex];     // ①  
  5.     // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry   
  6.     table[bucketIndex] = new Entry<K,V>(hash, key, value, e);   
  7.     // 如果 Map 中的 key-value 对的数量超过了极限  
  8.     if (size++ >= threshold)   
  9.         // 把 table 对象的长度扩充到 2 倍。  
  10.         resize(2 * table.length);    // ②  
  11. }   

上面方法的代码很简单,但其中包含了一个非常优雅的设计:系统总是将新添加的 Entry 对象放入 table 数组的 bucketIndex 索引处——如果 bucketIndex 索引处已经有了一个 Entry 对象,那新添加的 Entry 对象指向原有的 Entry 对象(产生一个 Entry 链),如果 bucketIndex 索引处没有 Entry 对象,也就是上面程序①号代码的 e 变量是 null,也就是新放入的 Entry 对象指向 null,也就是没有产生 Entry 链。 

JDK 源码 

在 JDK 安装目录下可以找到一个 src.zip 压缩文件,该文件里包含了 Java 基础类库的所有源文件。只要读者有学习兴趣,随时可以打开这份压缩文件来阅读 Java 类库的源代码,这对提高读者的编程能力是非常有帮助的。需要指出的是:src.zip 中包含的源代码并没有包含像上文中的中文注释,这些注释是笔者自己添加进去的。 

Hash 算法的性能选项 

根据上面代码可以看出,在同一个 bucket 存储 Entry 链的情况下,新放入的 Entry 总是位于 bucket 中,而最早放入该 bucket 中的 Entry 则位于这个 Entry 链的最末端。 

上面程序中还有这样两个变量: 

    * size:该变量保存了该 HashMap 中所包含的 key-value 对的数量。 
    * threshold:该变量包含了 HashMap 能容纳的 key-value 对的极限,它的值等于 HashMap 的容量乘以负载因子(load factor)。 

从上面程序中②号代码可以看出,当 size++ >= threshold 时,HashMap 会自动调用 resize 方法扩充 HashMap 的容量。每扩充一次,HashMap 的容量就增大一倍。 

上面程序中使用的 table 其实就是一个普通数组,每个数组都有一个固定的长度,这个数组的长度就是 HashMap 的容量。HashMap 包含如下几个构造器: 

    * HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。 
    * HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。 
    * HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。 

当创建一个 HashMap 时,系统会自动创建一个 table 数组来保存 HashMap 中的 Entry,下面是 HashMap 中一个构造器的代码:

[java] view plain copy
  1. // 以指定初始化容量、负载因子创建 HashMap   
  2.  public HashMap(int initialCapacity, float loadFactor)   
  3.  {   
  4.      // 初始容量不能为负数  
  5.      if (initialCapacity < 0)   
  6.          throw new IllegalArgumentException(   
  7.         "Illegal initial capacity: " +   
  8.              initialCapacity);   
  9.      // 如果初始容量大于最大容量,让出示容量  
  10.      if (initialCapacity > MAXIMUM_CAPACITY)   
  11.          initialCapacity = MAXIMUM_CAPACITY;   
  12.      // 负载因子必须大于 0 的数值  
  13.      if (loadFactor <= 0 || Float.isNaN(loadFactor))   
  14.          throw new IllegalArgumentException(   
  15.          loadFactor);   
  16.      // 计算出大于 initialCapacity 的最小的 2 的 n 次方值。  
  17.      int capacity = 1;   
  18.      while (capacity < initialCapacity)   
  19.          capacity <<= 1;   
  20.      this.loadFactor = loadFactor;   
  21.      // 设置容量极限等于容量 * 负载因子  
  22.      threshold = (int)(capacity * loadFactor);   
  23.      // 初始化 table 数组  
  24.      table = new Entry[capacity];            // ①  
  25.      init();   
  26.  }   

上面代码中粗体字代码包含了一个简洁的代码实现:找出大于 initialCapacity 的、最小的 2 的 n 次方值,并将其作为 HashMap 的实际容量(由 capacity 变量保存)。例如给定 initialCapacity 为 10,那么该 HashMap 的实际容量就是 16。 
程序①号代码处可以看到:table 的实质就是一个数组,一个长度为 capacity 的数组。 

对于 HashMap 及其子类而言,它们采用 Hash 算法来决定集合中元素的存储位置。当系统开始初始化 HashMap 时,系统会创建一个长度为 capacity 的 Entry 数组,这个数组里可以存储元素的位置被称为“桶(bucket)”,每个 bucket 都有其指定索引,系统可以根据其索引快速访问该 bucket 里存储的元素。 

无论何时,HashMap 的每个“桶”只存储一个元素(也就是一个 Entry),由于 Entry 对象可以包含一个引用变量(就是 Entry 构造器的的最后一个参数)用于指向下一个 Entry,因此可能出现的情况是:HashMap 的 bucket 中只有一个 Entry,但这个 Entry 指向另一个 Entry ——这就形成了一个 Entry 链。如图 1 所示:

图 1. HashMap 的存储示意 

HashMap 的读取实现 

当 HashMap 的每个 bucket 里存储的 Entry 只是单个 Entry ——也就是没有通过指针产生 Entry 链时,此时的 HashMap 具有最好的性能:当程序通过 key 取出对应 value 时,系统只要先计算出该 key 的 hashCode() 返回值,在根据该 hashCode 返回值找出该 key 在 table 数组中的索引,然后取出该索引处的 Entry,最后返回该 key 对应的 value 即可。看 HashMap 类的 get(K key) 方法代码: 

[java] view plain copy
  1. public V get(Object key)   
  2. {   
  3.  // 如果 key 是 null,调用 getForNullKey 取出对应的 value   
  4.  if (key == null)   
  5.      return getForNullKey();   
  6.  // 根据该 key 的 hashCode 值计算它的 hash 码  
  7.  int hash = hash(key.hashCode());   
  8.  // 直接取出 table 数组中指定索引处的值,  
  9.  for (Entry<K,V> e = table[indexFor(hash, table.length)];   
  10.      e != null;   
  11.      // 搜索该 Entry 链的下一个 Entr   
  12.      e = e.next)         // ①  
  13.  {   
  14.      Object k;   
  15.      // 如果该 Entry 的 key 与被搜索 key 相同  
  16.      if (e.hash == hash && ((k = e.key) == key   
  17.          || key.equals(k)))   
  18.          return e.value;   
  19.  }   
  20.  return null;   
  21. }   

从上面代码中可以看出,如果 HashMap 的每个 bucket 里只有一个 Entry 时,HashMap 可以根据索引、快速地取出该 bucket 里的 Entry;在发生“Hash 冲突”的情况下,单个 bucket 里存储的不是一个 Entry,而是一个 Entry 链,系统只能必须按顺序遍历每个 Entry,直到找到想搜索的 Entry 为止——如果恰好要搜索的 Entry 位于该 Entry 链的最末端(该 Entry 是最早放入该 bucket 中),那系统必须循环到最后才能找到该元素。 

归纳起来简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据 Hash 算法来决定其存储位置;当需要取出一个 Entry 时,也会根据 Hash 算法找到其存储位置,直接取出该 Entry。由此可见:HashMap 之所以能快速存、取它所包含的 Entry,完全类似于现实生活中母亲从小教我们的:不同的东西要放在不同的位置,需要时才能快速找到它。 

当创建 HashMap 时,有一个默认的负载因子(load factor),其默认值为 0.75,这是时间和空间成本上一种折衷:增大负载因子可以减少 Hash 表(就是那个 Entry 数组)所占用的内存空间,但会增加查询数据的时间开销,而查询是最频繁的的操作(HashMap 的 get() 与 put() 方法都要用到查询);减小负载因子会提高数据查询的性能,但会增加 Hash 表所占用的内存空间。 

掌握了上面知识之后,我们可以在创建 HashMap 时根据实际需要适当地调整 load factor 的值;如果程序比较关心空间开销、内存比较紧张,可以适当地增加负载因子;如果程序比较关心时间开销,内存比较宽裕则可以适当的减少负载因子。通常情况下,程序员无需改变负载因子的值。 

如果开始就知道 HashMap 会保存多个 key-value 对,可以在创建时就使用较大的初始化容量,如果 HashMap 中 Entry 的数量一直不会超过极限容量(capacity * load factor),HashMap 就无需调用 resize() 方法重新分配 table 数组,从而保证较好的性能。当然,开始就将初始容量设置太高可能会浪费空间(系统需要创建一个长度为 capacity 的 Entry 数组),因此创建 HashMap 时初始化容量设置也需要小心对待。


1:使用HashMap的一个简单例子

[java] view plain copy
  1. package com.pb.collection;  
  2.   
  3. import java.util.HashMap;  
  4. import java.util.Iterator;  
  5. import java.util.Set;  
  6. import java.util.Map.Entry;  
  7.   
  8. public class HashMapDemo {  
  9.   
  10.     public static void main(String[] args) {  
  11.           
  12.         HashMap<String, String> hashMap = new HashMap<String, String>();  
  13.         hashMap.put("cn""中国");  
  14.         hashMap.put("jp""日本");  
  15.         hashMap.put("fr""法国");  
  16.           
  17.         System.out.println(hashMap);  
  18.         System.out.println("cn:" + hashMap.get("cn"));  
  19.         System.out.println(hashMap.containsKey("cn"));  
  20.         System.out.println(hashMap.keySet());  
  21.         System.out.println(hashMap.isEmpty());  
  22.           
  23.         hashMap.remove("cn");  
  24.         System.out.println(hashMap.containsKey("cn"));  
  25.           
  26.         //采用Iterator遍历HashMap  
  27.         Iterator it = hashMap.keySet().iterator();  
  28.         while(it.hasNext()) {  
  29.             String key = (String)it.next();  
  30.             System.out.println("key:" + key);  
  31.             System.out.println("value:" + hashMap.get(key));  
  32.         }  
  33.           
  34.         //遍历HashMap的另一个方法  
  35.         Set<Entry<String, String>> sets = hashMap.entrySet();  
  36.         for(Entry<String, String> entry : sets) {  
  37.             System.out.print(entry.getKey() + ", ");  
  38.             System.out.println(entry.getValue());  
  39.         }  
  40.     }  
  41. }  


2:一个结合List和HashMap实现的例子

import java.util.Iterator;  

import java.util.List;  
import java.util.HashMap;  
import java.util.ArrayList;  
import java.util.Map;  
import java.util.Scanner;  
import java.util.Set;  
import java.util.Map.Entry;  
/** 
 * 在不创建学生类的情况下,从键盘输入n个学生信息(学号,姓名,年龄), 
 * 输入完成后,打印出各个学生信息 
 * @author ccna_zhang 
 * 
 */  
public class Test1 {  
      
    public static void main(String[] args) {  
          
        //定义保存学生信息的List,元素类型为HashMap  
        List<HashMap<String, Object>> list = new ArrayList<HashMap<String, Object>>();  
        Scanner input = new Scanner(System.in);  
          
        System.out.println("请输入学生的信息,y表示继续,n表示退出");  
        while("y".equals(input.next())) {  
            HashMap<String, Object> map = new HashMap<String, Object>();  
            System.out.println("请输入学号");  
            map.put("studentno", input.next());  
            System.out.println("请输入姓名");  
            map.put("name", input.next());  
            System.out.println("请输入年龄");  
            map.put("age", input.nextInt());  
            list.add(map);  
            System.out.println("请继续输入学生的信息,y表示继续,n表示退出");  
        }  
        System.out.println("输入的学生信息为:");  
        System.out.println("学生数量为:" + list.size());   
        Iterator<HashMap<String, Object>> it = list.iterator();  
        while(it.hasNext()) {  
            HashMap<String, Object> stuMap = it.next();  
            System.out.println("学号:" + stuMap.get("studentno") + " ,姓名:" + stuMap.get("name") + " ,年龄:" + stuMap.get("age"));
        }  
    }  
}  
原创粉丝点击