opencv 实现对摄像头输入图像中文件及证件等的实时跟踪,四边形检测及提取

来源:互联网 发布:新型数字滤波算法 编辑:程序博客网 时间:2024/05/17 12:20

最近有个需求:拍摄证件或纸质文件上传时,需要自动将拍摄背景去除,只保留证件或文件那部分的图像。

先来一张效果图
这里写图片描述

首先使用opencv提供的CvVideoCamera类来加载视频流
实现CvVideoCameraDelegate的方法:

- (void)processImage:(Mat &)mat;

这个代理方法能实时获取摄像头输入的每一帧图像

- (void)processImage:(Mat &)mat {    Mat src_gray, filtered, edges, dilated_edges;    //获取灰度图像    cvtColor(mat, src_gray, COLOR_BGR2GRAY);    //滤波,模糊处理,消除某些背景干扰信息    blur(src_gray, filtered, cv::Size(3, 3));    //腐蚀操作,消除某些背景干扰信息    erode(filtered, filtered, Mat(),cv::Point(-1, -1), 3, 1, 1);    int thresh = 35;    //边缘检测    Canny(filtered, edges, thresh, thresh*3, 3);    //膨胀操作,尽量使边缘闭合    dilate(edges, dilated_edges, Mat(), cv::Point(-1, -1), 3, 1, 1);    vector<vector<cv::Point> > contours, squares, hulls;    //寻找边框    findContours(dilated_edges, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);    vector<cv::Point> hull, approx;    for (size_t i = 0; i < contours.size(); i++)    {        //边框的凸包        convexHull(contours[i], hull);        //多边形拟合凸包边框(此时的拟合的精度较低)        approxPolyDP(Mat(hull), approx, arcLength(Mat(approx), true)*0.02, true);        //筛选出面积大于某一阈值的,且四边形的各个角度都接近直角的凸四边形        if (approx.size() == 4 && fabs(contourArea(Mat(approx))) > 40000 &&                isContourConvex(Mat(approx)))        {            double maxCosine = 0;            for (int j = 2; j < 5; j++)            {                double cosine = fabs(getAngle(approx[j%4], approx[j-2], approx[j-1]));                maxCosine = MAX(maxCosine, cosine);            }                //角度大概72度            if (maxCosine < 0.3)            {                squares.push_back(approx);                hulls.push_back(hull);             }         }      }        vector<cv::Point> largest_square;        //找出外接矩形最大的四边形        int idex = findLargestSquare(squares, largest_square);        if (largest_square.size() == 0 || idex == -1) return;        //找到这个最大的四边形对应的凸边框,再次进行多边形拟合,此次精度较高,拟合的结果可能是大于4条边的多边形        //接下来的操作,主要是为了解决,证件有圆角时检测到的四个顶点的连线会有切边的问题        hull = hulls[idex];        approxPolyDP(Mat(hull), approx, 3, true);        vector<cv::Point> newApprox;        double maxL = arcLength(Mat(approx), true)*0.02;        //找到高精度拟合时得到的顶点中 距离小于 低精度拟合得到的四个顶点 maxL的顶点,排除部分顶点的干扰        for (cv::Point p : approx)         {            if (!(getSpacePointToPoint(p, largest_square[0]) > maxL &&                 getSpacePointToPoint(p, largest_square[1]) > maxL &&                 getSpacePointToPoint(p, largest_square[2]) > maxL &&                 getSpacePointToPoint(p, largest_square[3]) > maxL))             {                newApprox.push_back(p);            }        }        //找到剩余顶点连线中,边长大于 2 * maxL的四条边作为四边形物体的四条边        vector<Vec4i> lines;        for (int i = 0; i < newApprox.size(); i++)         {            cv::Point p1 = newApprox[i];            cv::Point p2 = newApprox[(i+1)%newApprox.size()];            if (getSpacePointToPoint(p1, p2) > 2 * maxL)             {                lines.push_back(Vec4i(p1.x, p1.y, p2.x,p2.y));            }        }        //计算出这四条边中 相邻两条边的交点,即物体的四个顶点        vector<cv::Point> cornors1;        for (int i = 0; i < lines.size(); i++)         {            cv::Point cornor = computeIntersect(lines[i],lines[(i+1)%lines.size()]);            cornors1.push_back(cornor);        }        //绘制出四条边        for (int i = 0; i < cornors1.size(); i++)         {            line(mat, cornors1[i], cornors1[(i+1)%cornors1.size()], Scalar(0,0,255), 5);        }}

相关自定义函数:

#pragma mark =========== 寻找最大边框 ===========int findLargestSquare(const vector<vector<cv::Point> >& squares, vector<cv::Point>& biggest_square){    if (!squares.size()) return -1;    int max_width = 0;    int max_height = 0;    int max_square_idx = 0;    for (int i = 0; i < squares.size(); i++)    {        cv::Rect rectangle = boundingRect(Mat(squares[i]));        if ((rectangle.width >= max_width) && (rectangle.height >= max_height))        {            max_width = rectangle.width;            max_height = rectangle.height;            max_square_idx = i;        }    }    biggest_square = squares[max_square_idx];    return max_square_idx;}/** 根据三个点计算中间那个点的夹角   pt1 pt0 pt2 */double getAngle(cv::Point pt1, cv::Point pt2, cv::Point pt0){    double dx1 = pt1.x - pt0.x;    double dy1 = pt1.y - pt0.y;    double dx2 = pt2.x - pt0.x;    double dy2 = pt2.y - pt0.y;    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);}/** 点到点的距离 @param p1 点1 @param p2 点2 @return 距离 */double getSpacePointToPoint(cv::Point p1, cv::Point p2){    int a = p1.x-p2.x;    int b = p1.y-p2.y;    return sqrt(a * a + b * b);}/** 两直线的交点 @param a 线段1 @param b 线段2 @return 交点 */cv::Point2f computeIntersect(cv::Vec4i a, cv::Vec4i b)  {      int x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3], x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];      if (float d = ((float)(x1 - x2) * (y3 - y4)) - ((y1 - y2) * (x3 - x4)))      {          cv::Point2f pt;          pt.x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d;          pt.y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d;          return pt;      }      else          return cv::Point2f(-1, -1);  }  /** 对多个点按顺时针排序 @param corners 点的集合 */void sortCorners(std::vector<cv::Point2f>& corners)  {    if (corners.size() == 0) return;    //先延 X轴排列    cv::Point pl = corners[0];    int index = 0;    for (int i = 1; i < corners.size(); i++)     {        cv::Point point = corners[i];        if (pl.x > point.x)         {            pl = point;            index = i;        }    }    corners[index] = corners[0];    corners[0] = pl;    cv::Point lp = corners[0];    for (int i = 1; i < corners.size(); i++)     {        for (int j = i+1; j<corners.size(); j++)         {            cv::Point point1 = corners[i];            cv::Point point2 = corners[j];            if ((point1.y-lp.y*1.0)/(point1.x-lp.x)>(point2.y-lp.y*1.0)/(point2.x-lp.x))             {                cv::Point temp = point1;                corners[i] = corners[j];                corners[j] = temp;            }        }    }}

根据四边形的四个顶点,提取目标图像

    //对顶点顺时针排序    sortCorners(_corners);    //计算目标图像的尺寸    cv::Point2f p0 = _corners[0];    cv::Point2f p1 = _corners[1];    cv::Point2f p2 = _corners[2];    cv::Point2f p3 = _corners[3];    float space0 = getSpacePointToPoint(p0, p1);    float space1 = getSpacePointToPoint(p1, p2);    float space2 = getSpacePointToPoint(p2, p3);    float space3 = getSpacePointToPoint(p3, p0);    float width = space1 > space3 ? space1 : space3;    float height = space0 > space2 ? space0 : space2;    cv::Mat quad = cv::Mat::zeros(height * 3, width * 3, CV_8UC3);    std::vector<cv::Point2f> quad_pts;    quad_pts.push_back(cv::Point2f(0, quad.rows));    quad_pts.push_back(cv::Point2f(0, 0));    quad_pts.push_back(cv::Point2f(quad.cols, 0));    quad_pts.push_back(cv::Point2f(quad.cols, quad.rows));    //提取图像    cv::Mat transmtx = cv::getPerspectiveTransform(_corners , quad_pts);    cv::warpPerspective(mat, quad, transmtx, quad.size());

如果调用getPerspectiveTransform方法崩溃,请参照我的另一篇文章 opencv 调用 getPerspectiveTransform 函数报错

最后可以利用 拉普拉斯算子可以增强局部的图像对比度,是图像更清晰

    Mat imageMat;    Mat kernel = (Mat_<float>(3,3) << 0, -1, 0,  -1, 5, -1, 0, -1, 0);    filter2D(quad, imageMat, quad.depth(), kernel);    //Mat --> UIImage    self.imageView.image = MatToUIImage(imageMat);

好了,到这里就基本实现了对图像中的四边形文件或证件的提取。

如有问题,欢迎交流!

阅读全文
0 0
原创粉丝点击