使用Apriori进行关联分析(二)

来源:互联网 发布:西安软件行业成都 编辑:程序博客网 时间:2024/06/11 18:48

书接上文使用Apriori进行关联分析(一)介绍如何挖掘关联规则。

发现关联规则

  我们的目标是通过频繁项集挖掘到隐藏的关联规则。

  所谓关联规则,指通过某个元素集推导出另一个元素集。比如有一个频繁项集{底板,胶皮,胶水},那么一个可能的关联规则是{底板,胶皮}→{胶水},即如果客户购买了底板和胶皮,则该客户有较大概率购买胶水。这个频繁项集可以推导出6个关联规则:

  {底板,胶水}→{胶皮},

  {底板,胶皮}→{胶水},

  {胶皮,胶水}→{底板},

  {底板}→{胶水, 胶皮},

  {胶水}→{底板, 胶皮},

  {胶皮}→{底板, 胶水}

  箭头左边的集合称为“前件”,右边集合称为“后件”,根据前件会有较大概率推导出后件,这个概率就是之前提到的置信度。需要注意的是,如果A→B成立,B→A不一定成立。

  一个具有N个元素的频繁项集,共有M个可能的关联规则:

  下图是一个频繁4项集的所有关联规则网格示意图, 

  上图中深色区域表示低可信度规则,如果012→3是一条低可信度规则,则所有其它3为后件的规则都是低可信度。这需要从可信度的概念去理解,Confidence(012→3) = P(3|0,1,2),Confidence(01→23)=P(2,3|0,1),P(3|0,1,2) >= P(2,3|0,1)。由此可以对关联规则做剪枝处理。

  还是以上篇的超市交易数据为例,我们发现了如下的频繁项集:

  对于寻找关联规则来说,频繁1项集L1没有用处,因为L1中的每个集合仅有一个数据项,至少有两个数据项才能生成A→B这样的关联规则。

  当最小置信度取0.5时,L2最终能够挖掘出9条关联规则:

  从频繁3项集开始,挖掘的过程就较为复杂。

  假设有一个频繁4项集(这是杜撰的,文中的数据不能生成L4),其挖掘过程如下:

  因为书中的代码假设购买商品是有顺序的,所以在生成3后件时,{P2,P4}和{P3,P4}并不能生成{P2,P23,P4},如果想去掉假设,需要使用上篇中改进后的代码。

  发掘关联规则的代码如下:

#生成关联规则#L: 频繁项集列表#supportData: 包含频繁项集支持数据的字典#minConf 最小置信度def generateRules(L, supportData, minConf=0.7):    #包含置信度的规则列表    bigRuleList = []    #从频繁二项集开始遍历    for i in range(1, len(L)):        for freqSet in L[i]:            H1 = [frozenset([item]) for item in freqSet]            if (i > 1):                rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)            else:                calcConf(freqSet, H1, supportData, bigRuleList, minConf)    return bigRuleList# 计算是否满足最小可信度def calcConf(freqSet, H, supportData, brl, minConf=0.7):    prunedH = []    #用每个conseq作为后件    for conseq in H:        # 计算置信度        conf = supportData[freqSet] / supportData[freqSet - conseq]        if conf >= minConf:            print(freqSet - conseq, '-->', conseq, 'conf:', conf)            # 元组中的三个元素:前件、后件、置信度            brl.append((freqSet - conseq, conseq, conf))            prunedH.append(conseq)    #返回后件列表    return prunedH# 对规则进行评估def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):    m = len(H[0])    if (len(freqSet) > (m + 1)):        Hmp1 = aprioriGen(H, m + 1)       # print(1,H, Hmp1)        Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)        if (len(Hmp1) > 0):            rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)

 由此可以看到,apriori算法需要经常扫描全表,效率并不算高。

 


  参考文献:《机器学习实战》



原创粉丝点击