TCP通讯协议和UDP通讯协议

来源:互联网 发布:sci hub 知乎 编辑:程序博客网 时间:2024/05/03 04:16

    TCP---传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据。TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。 
UDP---用户数据报协议,是一个简单的面向数据报的运输层协议。UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快

现在Internet上流行的协议是TCP/IP协议,该协议中对低于1024的端口都有确切的定义,他们对应着Internet上一些常见的服务。这些常见的服务可以分为使用TCP端口(面向连接)和使用UDP端口(面向无连接)两种。

说到TCP和UDP,首先要明白“连接”和“无连接”的含义,他们的关系可以用一个形象地比喻来说明,就是打电话和写信。两个人如果要通话,首先要建立连接——即打电话时的拨号,等待响应后——即接听电话后,才能相互传递信息,最后还要断开连接——即挂电话。写信就比较简单了,填写好收信人的地址后将信投入邮筒,收信人就可以收到了。从这个分析可以看出,建立连接可以在需要痛心地双方建立一个传递信息的通道,在发送方发送请求连接信息接收方响应后,由于是在接受方响应后才开始传递信息,而且是在一个通道中传送,因此接受方能比较完整地收到发送方发出的信息,即信息传递的可靠性比较高。但也正因为需要建立连接,使资源开销加大(在建立连接前必须等待接受方响应,传输信息过程中必须确认信息是否传到及断开连接时发出相应的信号等),独占一个通道,在断开连接钱不能建立另一个连接,即两人在通话过程中第三方不能打入电话。而无连接是一开始就发送信息(严格说来,这是没有开始、结束的),只是一次性的传递,是先不需要接受方的响应,因而在一定程度上也无法保证信息传递的可靠性了,就像写信一样,我们只是将信寄出去,却不能保证收信人一定可以收到。
TCP是面向连接的,有比较高的可靠性,
一些要求比较高的服务一般使用这个协议,如FTP、Telnet、SMTP、HTTP、POP3等,而UDP是面向无连接的,使用这个协议的常见服务有DNS、SNMP、QQ等。对于QQ必须另外说明一下,QQ2003以前是只使用UDP协议的,其服务器使用8000端口,侦听是否有信息传来,客户端使用4000端口,向外发送信息(这也就不难理解在一般的显IP的QQ版本中显示好友的IP地址信息中端口常为4000或其后续端口的原因了),即QQ程序既接受服务又提供服务,在以后的QQ版本中也支持使用TCP协议了。

  1. TCP通信
  2. UDP通信

1. TCP通信

1.1. Socket通讯模型

1.1.1. Server端多线程模型

通过上一节我们已经知道了如何使用ServerSocket与Socket进行通讯了,但是这里存在着一个问题,就是只能“p2p”点对点。一个服务端对一个客户端。若我们想让一个服务端可以同时支持多个客户端应该怎么做呢?这时我们需要分析之前的代码。我们可以看到,当服务端的ServerSocket通过accept方法侦听到一个客户端Socket连接后,就获取该Socket并与该客户端通过流进行双方的通讯了,这里的问题在于,只有不断的调用accept方法,我们才能侦听到不同客户端的连接。但是若我们循环侦听客户端的连接,又无暇顾及与连接上的客户端交互,这时我们需要做的事情就是并发。我们可以创建一个线程类ClientHandler,并将于客户端交互的工作全部委托线程来处理。这样我们就可以在当一个客户端连接后,启动一个线程来负责与客户端交互,而我们也可以循环侦听客户端的连接了。

我们需要对服务端的代码进行修改:

  1. /**
  2. * Server端应用程序*
  3. */
  4. public class Server {
  5.     public static void main(String[] args) {
  6.         ServerSocket server = null;
  7.         try {
  8.             //创建ServerSocket并申请服务端口为8088
  9.             server = new ServerSocket(8088);
  10.             
  11.             while(true){
  12.                 //循环侦听客户端的连接
  13.                 Socket socket = server.accept();
  14.                 //当一个客户端连接后,启动线程来处理该客户端的交互
  15.                 new ClientHandler(socket).start();
  16.             }
  17.         } catch (Exception e) {
  18.             e.printStackTrace();
  19.         } finally{
  20.             if(server != null){
  21.                 try {
  22.                     server.close();
  23.                 } catch (IOException e) {
  24.                 }
  25.             }
  26.         }
  27.     }
  28. }
  29. /**
  30. * 线程类
  31. * 该线程的作用是并发与客户端进行交互
  32. * 这里的代码就是原来在Server中客户端连接后交互的代码
  33. */
  34. class ClientHandler extends Thread{
  35.     private Socket socket;
  36.     public ClientHandler(Socket socket){
  37.         this.socket = socket;
  38.     }
  39.     public void run(){
  40.         try {
  41.             //获取输入流,用于读取客户端发送过来的消息
  42.             InputStream in = socket.getInputStream();
  43.             BufferedReader reader
  44.                 = new BufferedReader(
  45.                     new InputStreamReader(
  46.                         in,"UTF-8"
  47.                     )
  48.                 );
  49.             
  50.             //获取输出流,用于向该客户端发送消息
  51.             OutputStream out = socket.getOutputStream();
  52.             PrintWriter writer
  53.                 = new PrintWriter(
  54.                     new OutputStreamWriter(
  55.                         out,"UTF-8"    
  56.                     ),true
  57.                 );
  58.             
  59.             //读取客户端发送的消息
  60.             String message = reader.readLine();
  61.             System.out.println("客户端说:"+message);
  62.             
  63.             //向客户端发送消息
  64.             writer.println("你好客户端!");
  65.         } catch (Exception e) {
  66.             e.printStackTrace();
  67.         }
  68.     }
  69. }

经过上面的改动,我们再次启动服务端,这个时候我们会发现,我们启动若干客户端都可以被服务器所接受并进行交互了。

2. UDP通信

2.1. DatagramPacket

2.1.1. 创建接收包

DatagramPacket:UDP数据报基于IP建立的,每台主机有65536个端口号可以使用。数据报中字节数限制为65536-8 。包含8字节的头信息。

构造接收包:

  1.     DatagramPacket(byte[] buf, int length)

将数据包中Length长的数据装进Buf数组。

  1.     DatagramPacket(byte[] buf, int offset, int length)

将数据包中从Offset开始、Length长的数据装进Buf数组。

2.1.2. 创建发送包

构造发送包:

  1.     DatagramPacket(byte[] buf, int length, InetAddress clientAddress, int clientPort)

从Buf数组中,取出Length长的数据创建数据包对象,目标是clientAddress地址,clientPort端口,通常用来发送数据给客户端。

  1.     DatagramPacket(byte[] buf, int offset, int length, InetAddress clientAddress, int clientPort)

从Buf数组中,取出Offset开始的、Length长的数据创建数据包对象,目标是clientAddress地址,clientPort端口,通常用来发送数据给客户端。

2.2. DatagramSocket

2.2.1. 服务端接收

DatagramSocke用于接收和发送UDP的Socket实例 。

  1.     DatagramSocket(int port)

创建实例,并固定监听Port端口的报文。通常用于服务端。

其中方法:

  1.      receive(DatagramPacket d)

接收数据报文到d中。receive方法产生 “阻塞”。会一直等待知道有数据被读取到。

2.2.2. 客户端发送

无参的构造方法DatagramSocket()通常用于客户端编程,它并没有特定监听的端口,仅仅使用一个临时的。程序会让操作系统分配一个可用的端口。

其中方法:

  1.     send(DatagramPacket dp)

该方法用于发送报文dp到目的地。

代码如下:

  1.     /**
  2.      * Server端程序
  3.      */
  4.     public class Server {
  5.     public static void main(String[] args) {
  6.         DatagramSocket socket = null;
  7.         try {
  8.             socket = new DatagramSocket(8088);//申请8088端口
  9.             byte[] data = new byte[1024];
  10.             DatagramPacket packet
  11.                 = new DatagramPacket(data, data.length);//创建接收包
  12.             socket.receive(packet);//会产生阻塞,读取发送过来的数据
  13.             String str = new String(packet.getData(),0,packet.getLength());//从包中取数据
  14.             System.out.println(str);
  15.             
  16.         } catch (Exception e) {
  17.             e.printStackTrace();
  18.         } finally{
  19.             if(socket != null){
  20.                 socket.close();//关闭释放资源
  21.             }
  22.         }
  23.     }
  24. }
  25. /**
  26. * Client端程序
  27. */
  28. public class Client {
  29.     public static void main(String[] args) {
  30.         DatagramSocket socket = null;
  31.         try {
  32.             socket = new DatagramSocket();//创建Socket
  33.             byte[] data = "你好服务器!".getBytes();
  34.             DatagramPacket packet = new DatagramPacket(
  35.                                         data,
  36.                                         data.length,
  37.                                         InetAddress.getByName("localhost"),
  38.                                         8088
  39.                                     );//创建发送包
  40.             socket.send(packet);//发送数据
  41.             
  42.             
  43.         } catch (Exception e) {
  44.             e.printStackTrace();
  45.         } finally{
  46.             if(socket != null){
  47.                 socket.close();//关闭以释放资源
  48.             }
  49.         }
  50.     }
  51. }


TCP与UDP基本区别?
  1.基于连接与无连接
  2.TCP要求系统资源较多,UDP较少; 
  3.UDP程序结构较简单 
  4.流模式(TCP)与数据报模式(UDP); 
  5.TCP保证数据正确性,UDP可能丢包 
  6.TCP保证数据顺序,UDP不保证 
  

UDP应用场景:
  1.面向数据报方式
  2.网络数据大多为短消息 
  3.拥有大量Client
  4.对数据安全性无特殊要求
  5.网络负担非常重,但对响应速度要求高
 
具体编程时的区别
   1.socket()的参数不同 
   2.UDP Server不需要调用listen和accept 
   3.UDP收发数据用sendto/recvfrom函数 
   4.TCP:地址信息在connect/accept时确定 
   5.UDP:在sendto/recvfrom函数中每次均 需指定地址信息 
   6.UDP:shutdown函数无效

 
编程区别
   通常我们在说到网络编程时默认是指TCP编程,即用前面提到的socket函数创建一个socket用于TCP通讯,函数参数我们通常填为SOCK_STREAM。即socket(PF_INET, SOCK_STREAM, 0),这表示建立一个socket用于流式网络通讯。 
   SOCK_STREAM这种的特点是面向连接的,即每次收发数据之前必须通过connect建立连接,也是双向的,即任何一方都可以收发数据,协议本身提供了一些保障机制保证它是可靠的、有序的,即每个包按照发送的顺序到达接收方。 

  而SOCK_DGRAM这种是User Datagram Protocol协议的网络通讯,它是无连接的,不可靠的,因为通讯双方发送数据后不知道对方是否已经收到数据,是否正常收到数据。任何一方建立一个socket以后就可以用sendto发送数据,也可以用recvfrom接收数据。根本不关心对方是否存在,是否发送了数据。它的特点是通讯速度比较快。大家都知道TCP是要经过三次握手的,而UDP没有。 

基于上述不同,UDP和TCP编程步骤也有些不同,如下:

TCP: 
TCP编程的服务器端一般步骤是: 
  1、创建一个socket,用函数socket(); 
  2、设置socket属性,用函数setsockopt(); * 可选 
  3、绑定IP地址、端口等信息到socket上,用函数bind(); 
  4、开启监听,用函数listen(); 
  5、接收客户端上来的连接,用函数accept(); 
  6、收发数据,用函数send()和recv(),或者read()和write(); 
  7、关闭网络连接; 
  8、关闭监听; 

TCP编程的客户端一般步骤是: 
  1、创建一个socket,用函数socket(); 
  2、设置socket属性,用函数setsockopt();* 可选 
  3、绑定IP地址、端口等信息到socket上,用函数bind();* 可选 
  4、设置要连接的对方的IP地址和端口等属性; 
  5、连接服务器,用函数connect(); 
  6、收发数据,用函数send()和recv(),或者read()和write(); 
  7、关闭网络连接;

UDP:
与之对应的UDP编程步骤要简单许多,分别如下: 
  UDP编程的服务器端一般步骤是: 
  1、创建一个socket,用函数socket(); 
  2、设置socket属性,用函数setsockopt();* 可选 
  3、绑定IP地址、端口等信息到socket上,用函数bind(); 
  4、循环接收数据,用函数recvfrom(); 
  5、关闭网络连接; 

UDP编程的客户端一般步骤是: 
  1、创建一个socket,用函数socket(); 
  2、设置socket属性,用函数setsockopt();* 可选 
  3、绑定IP地址、端口等信息到socket上,用函数bind();* 可选 
  4、设置对方的IP地址和端口等属性; 
  5、发送数据,用函数sendto(); 
  6、关闭网络连接;

TCP和UDP是OSI模型中的运输层中的协议。TCP提供可靠的通信传输,而UDP则常被用于让广播和细节控制交给应用的通信传输。

UDP补充:
   UDP不提供复杂的控制机制,利用IP提供面向无连接的通信服务。并且它是将应用程序发来的数据在收到的那一刻,立刻按照原样发送到网络上的一种机制。即使是出现网络拥堵的情况下,UDP也无法进行流量控制等避免网络拥塞的行为。此外,传输途中如果出现了丢包,UDO也不负责重发。甚至当出现包的到达顺序乱掉时也没有纠正的功能。如果需要这些细节控制,那么不得不交给由采用UDO的应用程序去处理。换句话说,UDP将部分控制转移到应用程序去处理,自己却只提供作为传输层协议的最基本功能。UDP有点类似于用户说什么听什么的机制,但是需要用户充分考虑好上层协议类型并制作相应的应用程序。

TCP补充:
  TCP充分实现了数据传输时各种控制功能,可以进行丢包的重发控制,还可以对次序乱掉的分包进行顺序控制。而这些在UDP中都没有。此外,TCP作为一种面向有连接的协议,只有在确认通信对端存在时才会发送数据,从而可以控制通信流量的浪费。TCP通过检验和、序列号、确认应答、重发控制、连接管理以及窗口控制等机制实现可靠性传输。


TCP与UDP区别总结:
1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接
2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失,不重复,且按序到达;UDP尽最大努力交付,即不保   证可靠交付
3、TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;UDP是面向报文的
  UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
4、每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信
5、TCP首部开销20字节;UDP的首部开销小,只有8个字节
6、TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道



TCP/IP协议是一个协议簇。里面包括很多协议的。UDP只是其中的一个。之所以命名为TCP/IP协议,因为TCP,IP协议是两个很重要的协议,就用他两命名了。

TCP/IP协议集包括应用层,传输层网络层网络访问层
其中应用层包括:
超文本传输协议(HTTP):万维网的基本协议.   
文件传输(TFTP简单文件传输协议):   
远程登录(Telnet),提供远程访问其它主机功能,它允许用户登录     
internet主机,并在这台主机上执行命令.    
网络管理(SNMP简单网络管理协议),该协议提供了监控网络设备的方法,以及配置管理,统计信息收集,性能管理及安全管理等.   
域名系统(DNS),该系统用于在internet中将域名及其公共广播的网络节点转换成IP地址. 
其次网络层包括:    
Internet协议(IP)     
Internet控制信息协议(ICMP)    
地址解析协议(ARP)    
反向地址解析协议(RARP)  
最后说网络访问层:网络访问层又称作主机到网络层(host-to-network).网络访问层的功能包括IP地址与物理地址硬件的映射,以及将IP封装成帧.基于不同硬件类型的网络接口,网络访问层定义了和物理介质的连接.
当然我这里说得不够完善,TCP/IP协议本来就是一门学问,每一个分支都是一个很复杂的流程,但我相信每位学习软件开发的同学都有必要去仔细了解一番。
下面我着重讲解一下TCP协议和UDP协议的区别。
TCP(Transmission Control Protocol,传输控制协议)是面向连接的协议,也就是说,在收发数据前,必须和对方建立可靠的连接。一个TCP连接必须要经过三次对话才能建立起来,其中的过程非常复杂,只简单的描述下这三次对话的简单过程:主机A向主机B发出连接请求数据包:我想给你发数据,可以吗?,这是第一次对话;主机B向主机A发送同意连接和要求同步(同步就是两台主机一个在发送,一个在接收,协调工作)的数据包:可以,你什么时候发?,这是第二次对话;主机A再发出一个数据包确认主机B的要求同步:我现在就发,你接着吧!,这是第三次对话。三次对话的目的是使数据包的发送和接收同步,经过三次对话之后,主机A才向主机B正式发送数据。
TCP三次握手过程
主机A通过向主机B 发送一个含有同步序列号的标志位的数据段给主机B ,向主机B 请求建立连接,通过这个数据段,
主机A告诉主机B 两件事:我想要和你通信;你可以用哪个序列号作为起始数据段来回应我.
2 主机B 收到主机A的请求后,用一个带有确认应答(ACK)和同步序列号(SYN)标志位的数据段响应主机A,也告诉主机A两件事:
我已经收到你的请求了,你可以传输数据了;你要用哪佧序列号作为起始数据段来回应我
3 主机A收到这个数据段后,再发送一个确认应答,确认已收到主机B 的数据段:"我已收到回复,我现在要开始传输实际数据了

这样3次握手就完成了,主机A和主机B 就可以传输数据了.
3次握手的特点
没有应用层的数据
SYN这个标志位只有在TCP建产连接时才会被置1
握手完成后SYN标志位被置0


TCP
建立连接要进行3次握手,而断开连接要进行4次

当主机A完成数据传输后,将控制位FIN置1,提出停止TCP连接的请求
2  主机B收到FIN后对其作出响应,确认这一方向上的TCP连接将关闭,将ACK置1
3 由B 端再提出反方向的关闭请求,将FIN置1
4 主机A对主机B的请求进行确认,将ACK置1,双方向的关闭结束.
由TCP的三次握手和四次断开可以看出,TCP使用面向连接的通信方式,大大提高了数据通信的可靠性,使发送数据端
和接收端在数据正式传输前就有了交互,为数据正式传输打下了可靠的基础
名词解释
ACK  TCP报头的控制位之一,对数据进行确认.确认由目的端发出,用它来告诉发送端这个序列号之前的数据段
都收到了.比如,确认号为X,则表示前X-1个数据段都收到了,只有当ACK=1时,确认号才有效,当ACK=0时,确认号无效,这时会要求重传数据,保证数据的完整性.
SYN  同步序列号,TCP建立连接时将这个位置1
FIN  发送端完成发送任务位,当TCP完成数据传输需要断开时,提出断开连接的一方将这位置1
TCP的包头结构:
源端口 16位
目标端口 16位
序列号 32位
回应序号 32位
TCP头长度 4位
reserved 6位
控制代码 6位
窗口大小 16位
偏移量 16位
校验和 16位
选项  32位(可选)
这样我们得出了TCP包头的最小长度,为20字节。

UDP(User Data Protocol,用户数据报协议)

(1) UDP是一个非连接的协议,传输数据之前源端和终端不建立连接,当它想传送时就简单地去抓取来自应用程序的数据,并尽可能快地把它扔到网络上。在发送端,UDP传送数据的速度仅仅是受应用程序生成数据的速度、计算机的能力和传输带宽的限制;在接收端,UDP把每个消息段放在队列中,应用程序每次从队列中读一个消息段。
(2) 由于传输数据不建立连接,因此也就不需要维护连接状态,包括收发状态等,因此一台服务机可同时向多个客户机传输相同的消息。
(3) UDP信息包的标题很短,只有8个字节,相对于TCP的20个字节信息包的额外开销很小。
(4) 吞吐量不受拥挤控制算法的调节,只受应用软件生成数据的速率、传输带宽、源端和终端主机性能的限制。
(5)UDP使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态表(这里面有许多参数)。
(6)UDP是面向报文的。发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付给IP层。既不拆分,也不合并,而是保留这些报文的边界,因此,应用程序需要选择合适的报文大小。
我们经常使用ping命令来测试两台主机之间TCP/IP通信是否正常,其实ping命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。
UDP的包头结构:
源端口 16位
目的端口 16位
长度 16位
校验和 16位


小结TCP与UDP的区别:
1.基于连接与无连接;
2.对系统资源的要求(TCP较多,UDP少);
3.UDP程序结构较简单;
4.流模式与数据报模式 ;

5.TCP保证数据正确性,UDP可能丢包,TCP保证数据顺序,UDP不保证。
原创粉丝点击