深入解析OkHttp3

来源:互联网 发布:手机送货单软件 编辑:程序博客网 时间:2024/05/21 05:06

OkHttp是一个精巧的网络请求库,有如下特性: 
1)支持http2,对一台机器的所有请求共享同一个socket 
2)内置连接池,支持连接复用,减少延迟 
3)支持透明的gzip压缩响应体 
4)通过缓存避免重复的请求 
5)请求失败时自动重试主机的其他ip,自动重定向 
6)好用的API

其本身就是一个很强大的库,再加上Retrofit2、Picasso的这一套组合拳,使其愈发的受到开发者的关注。本篇博客,我将对Okhttp3进行分析(源码基于Okhttp3.4)。

如何引入Okhttp3?

配置Okhttp3非常简单,只需要在Android Studio 的gradle进行如下的配置:

 compile 'com.squareup.okhttp3:okhttp:3.4.1'
  • 1

添加网络权限:

<uses-permission android:name="android.permission.INTERNET"/>
  • 1

Okhttp3的基本使用

okHttp的get请求 
okHttp的一般使用如下,okHttp默认使用的就是get请求

 String url = "http://write.blog.csdn.net/postlist/0/0/enabled/1";    mHttpClient = new OkHttpClient();    Request request = new Request.Builder().url(url).build();    okhttp3.Response response = null;    try {            response = mHttpClient.newCall(request).execute();            String json = response.body().string();            Log.d("okHttp",json);    } catch (IOException e) {        e.printStackTrace();    }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

我们试着将数据在logcat进行打印,发现会报错,原因就是不能在主线程中进行耗时的操作 
这里写图片描述
说明mHttpClient.newCall(request).execute()是同步的,那有没有异步的方法呢,答案是肯定的,就是mHttpClient.newCall(request).enqueue()方法,里面需要new一个callback我们对代码进行修改,如下

public void requestBlog() {     String url = "http://write.blog.csdn.net/postlist/0/0/enabled/1";     mHttpClient = new OkHttpClient();     Request request = new Request.Builder().url(url).build();/* okhttp3.Response response = null;*/         /*response = mHttpClient.newCall(request).execute();*/     mHttpClient.newCall(request).enqueue(new Callback() {         @Override         public void onFailure(Call call, IOException e) {         }         @Override         public void onResponse(Call call, Response response) throws IOException {             String json = response.body().string();             Log.d("okHttp", json);         }     }); }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

这里写图片描述

Okhttp的POST请求

POST提交Json数据

private void postJson() throws IOException {    String url = "http://write.blog.csdn.net/postlist/0/0/enabled/1";    String json = "haha";    OkHttpClient client = new OkHttpClient();    RequestBody body = RequestBody.create(JSON, json);    Request request = new Request.Builder()            .url(url)            .post(body)            .build();    client.newCall(request).enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            Log.d(TAG, response.body().string());        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

POST提交键值对 
很多时候我们会需要通过POST方式把键值对数据传送到服务器。 OkHttp提供了很方便的方式来做这件事情。

private void post(String url, String json) throws IOException {     OkHttpClient client = new OkHttpClient();     RequestBody formBody = new FormBody.Builder()             .add("name", "liming")             .add("school", "beida")             .build();     Request request = new Request.Builder()             .url(url)             .post(formBody)             .build();     Call call = client.newCall(request);     call.enqueue(new Callback() {         @Override         public void onFailure(Call call, IOException e) {         }         @Override         public void onResponse(Call call, Response response) throws IOException {             String str = response.body().string();             Log.i(TAG, str);         }     }); }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

异步上传文件 
上传文件本身也是一个POST请求 
定义上传文件类型

public static final MediaType MEDIA_TYPE_MARKDOWN        = MediaType.parse("text/x-markdown; charset=utf-8");
  • 1
  • 2

将文件上传到服务器上:

private void postFile() {    OkHttpClient mOkHttpClient = new OkHttpClient();    File file = new File("/sdcard/demo.txt");    Request request = new Request.Builder()            .url("https://api.github.com/markdown/raw")            .post(RequestBody.create(MEDIA_TYPE_MARKDOWN, file))            .build();    mOkHttpClient.newCall(request).enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            Log.i(TAG, response.body().string());        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

添加如下权限:

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/><uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
  • 1
  • 2

提取响应头 
典型的HTTP头 像是一个 Map

private final OkHttpClient client = new OkHttpClient();public void run() throws Exception {    Request request = new Request.Builder()            .url("https://api.github.com/repos/square/okhttp/issues")            .header("User-Agent", "OkHttp Headers.java")            .addHeader("Accept", "application/json; q=0.5")            .addHeader("Accept", "application/vnd.github.v3+json")            .build();    Response response = client.newCall(request).execute();    if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);    System.out.println("Server: " + response.header("Server"));    System.out.println("Date: " + response.header("Date"));    System.out.println("Vary: " + response.headers("Vary"));}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

Post方式提交String 
使用HTTP POST提交请求到服务。这个例子提交了一个markdown文档到web服务,以HTML方式渲染markdown。因为整个请求体都在内存中,因此避免使用此api提交大文档(大于1MB)。

private void postString() throws IOException {    OkHttpClient client = new OkHttpClient();    String postBody = ""            + "Releases\n"            + "--------\n"            + "\n"            + " * zhangfei\n"            + " * guanyu\n"            + " * liubei\n";    Request request = new Request.Builder()            .url("https://api.github.com/markdown/raw")            .post(RequestBody.create(MEDIA_TYPE_MARKDOWN, postBody))            .build();    Call call = client.newCall(request);    call.enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            System.out.println(response.body().string());        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

Post方式提交流

以流的方式POST提交请求体。请求体的内容由流写入产生。这个例子是流直接写入Okio的BufferedSink。你的程序可能会使用OutputStream,你可以使用BufferedSink.outputStream()来获取。

public static final MediaType MEDIA_TYPE_MARKDOWN        = MediaType.parse("text/x-markdown; charset=utf-8");private void postStream() throws IOException {    RequestBody requestBody = new RequestBody() {        @Override        public MediaType contentType() {            return MEDIA_TYPE_MARKDOWN;        }        @Override        public void writeTo(BufferedSink sink) throws IOException {            sink.writeUtf8("Numbers\n");            sink.writeUtf8("-------\n");            for (int i = 2; i <= 997; i++) {                sink.writeUtf8(String.format(" * %s = %s\n", i, factor(i)));            }        }        private String factor(int n) {            for (int i = 2; i < n; i++) {                int x = n / i;                if (x * i == n) return factor(x) + " × " + i;            }            return Integer.toString(n);        }    };    Request request = new Request.Builder()            .url("https://api.github.com/markdown/raw")            .post(requestBody)            .build();    Call call = client.newCall(request);    call.enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            System.out.println(response.body().string());        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

Post方式提交表单

private void postForm() {    OkHttpClient client = new OkHttpClient();    RequestBody formBody = new FormBody.Builder()            .add("search", "Jurassic Park")            .build();    Request request = new Request.Builder()            .url("https://en.wikipedia.org/w/index.php")            .post(formBody)            .build();    Call call = client.newCall(request);    call.enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            System.out.println(response.body().string());        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

Post方式提交分块请求 
MultipartBody 可以构建复杂的请求体,与HTML文件上传形式兼容。多块请求体中每块请求都是一个请求体,可以定义自己的请求头。这些请求头可以用来描述这块请求,例如他的Content-Disposition。如果Content-Length和Content-Type可用的话,他们会被自动添加到请求头中。

private static final String IMGUR_CLIENT_ID = "...";private static final MediaType MEDIA_TYPE_PNG = MediaType.parse("image/png");private void postMultipartBody() {    OkHttpClient client = new OkHttpClient();    // Use the imgur image upload API as documented at https://api.imgur.com/endpoints/image    MultipartBody body = new MultipartBody.Builder("AaB03x")            .setType(MultipartBody.FORM)            .addPart(                    Headers.of("Content-Disposition", "form-data; name=\"title\""),                    RequestBody.create(null, "Square Logo"))            .addPart(                    Headers.of("Content-Disposition", "form-data; name=\"image\""),                    RequestBody.create(MEDIA_TYPE_PNG, new File("website/static/logo-square.png")))            .build();    Request request = new Request.Builder()            .header("Authorization", "Client-ID " + IMGUR_CLIENT_ID)            .url("https://api.imgur.com/3/image")            .post(body)            .build();    Call call = client.newCall(request);    call.enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            System.out.println(response.body().string());        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

响应缓存 
为了缓存响应,你需要一个你可以读写的缓存目录,和缓存大小的限制。这个缓存目录应该是私有的,不信任的程序应不能读取缓存内容。 
一个缓存目录同时拥有多个缓存访问是错误的。大多数程序只需要调用一次new OkHttpClient(),在第一次调用时配置好缓存,然后其他地方只需要调用这个实例就可以了。否则两个缓存示例互相干扰,破坏响应缓存,而且有可能会导致程序崩溃。 
响应缓存使用HTTP头作为配置。你可以在请求头中添加Cache-Control: max-stale=3600 ,OkHttp缓存会支持。你的服务通过响应头确定响应缓存多长时间,例如使用Cache-Control: max-age=9600。

int cacheSize = 10 * 1024 * 1024; // 10 MiBCache cache = new Cache(cacheDirectory, cacheSize);OkHttpClient.Builder builder = new OkHttpClient.Builder();builder.cache(cache);OkHttpClient client = builder.build();Request request = new Request.Builder()        .url("http://publicobject.com/helloworld.txt")        .build();Call call = client.newCall(request);call.enqueue(new Callback() {    @Override    public void onFailure(Call call, IOException e) {    }    @Override    public void onResponse(Call call, Response response) throws IOException {        String response1Body = response.body().string();        System.out.println("Response 1 response:          " + response);        System.out.println("Response 1 cache response:    " + response.cacheResponse());        System.out.println("Response 1 network response:  " + response.networkResponse());    }});
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

超时 
没有响应时使用超时结束call。没有响应的原因可能是客户点链接问题、服务器可用性问题或者这之间的其他东西。OkHttp支持连接,读取和写入超时。

private void ConfigureTimeouts() {    OkHttpClient.Builder builder = new OkHttpClient.Builder();    OkHttpClient client = builder.build();    client.newBuilder().connectTimeout(10, TimeUnit.SECONDS);    client.newBuilder().readTimeout(10,TimeUnit.SECONDS);    client.newBuilder().writeTimeout(10,TimeUnit.SECONDS);    Request request = new Request.Builder()            .url("http://httpbin.org/delay/2") // This URL is served with a 2 second delay.            .build();    Call call = client.newCall(request);    call.enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {            System.out.println("Response completed: " + response);        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

简单封装okHttp框架

新建一个工具类OkHttpUtils 
OkHttpClient必须是单例的,所以这里我们需要使用到单例设计模式,私有化构造函数,提供一个方法给外界获取OkHttpUtils实例对象

public class OkHttpUtils {    private  static  OkHttpUtils mInstance;    private OkHttpClient mHttpClient;    private OkHttpUtils() {    };    public static  OkHttpUtils getInstance(){        return  mInstance;    }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

一般网络请求分为get和post请求两种,但无论哪种请求都是需要用到request的,所以我们首先封装一个request,创建一个doRequest方法,在其内先编写mHttpClient.newCall(request).enqueue(new Callback())相关逻辑

public  void doRequest(final Request request){    mHttpClient.newCall(request).enqueue(new Callback() {        @Override        public void onFailure(Call call, IOException e) {        }        @Override        public void onResponse(Call call, Response response) throws IOException {        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

我们需要自定义一个callback,BaseCallback,并将其传入request方法中

public class BaseCallback  {}
  • 1
  • 2
  • 3

在OkHttpUtils中编写get和post方法

public void get(String url){}public void post(String url,Map<String,Object> param){}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

post方法中构建request对象,这里我们需要创建一个buildRequest方法,用于生成request对象

private  Request buildRequest(String url,HttpMethodType methodType,Map<String,Object> params){    return null;}
  • 1
  • 2
  • 3

这里需要定一个枚举对象HttpMethodType,用于区分是get还是post

enum  HttpMethodType{    GET,    POST,}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

buildRequest方法根据HttpMethodType不同有相应的逻辑处理

private  Request buildRequest(String url,HttpMethodType methodType,Map<String,Object> params){    Request.Builder builder = new Request.Builder()            .url(url);    if (methodType == HttpMethodType.POST){        builder.post(body);    }    else if(methodType == HttpMethodType.GET){        builder.get();    }    return builder.build();}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

builder.post()方法中需要一个body,所以我们需要创建一个方法builderFormData()方法用于返回RequestBody,这里内部逻辑后面再进行完善

private RequestBody builderFormData(Map<String,Object> params){    return null;}
  • 1
  • 2
  • 3

于是buildRequest方法变成了这样

private  Request buildRequest(String url,HttpMethodType methodType,Map<String,Object> params){    Request.Builder builder = new Request.Builder()            .url(url);    if (methodType == HttpMethodType.POST){        RequestBody body = builderFormData(params);        builder.post(body);    }    else if(methodType == HttpMethodType.GET){        builder.get();    }    return builder.build();}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

get方法进行修改:

public void get(String url,BaseCallback callback){    Request request = buildRequest(url,HttpMethodType.GET,null);    doRequest(request,callback);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

post方法进行修改:

public void post(String url,Map<String,Object> params,BaseCallback callback){    Request request = buildRequest(url,HttpMethodType.POST,params);    doRequest(request,callback);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

完善builderFormData()方法

private RequestBody builderFormData(Map<String,String> params){    FormBody.Builder builder =  new FormBody.Builder();    if(params!=null){        for(Map.Entry<String,String> entry:params.entrySet()){            builder.add(entry.getKey(),entry.getValue());        }    }    return builder.build();}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

BaseCallback中定义一个抽象方法onBeforeRequest,这样做的理由是我们在加载网络数据成功前,一般都有进度条等显示,这个方法就是用来做这些处理的

public abstract class BaseCallback  {    public  abstract void onBeforeRequest(Request request);}
  • 1
  • 2
  • 3
  • 4
  • 5

OkHttpUtils的doRequest方法增加如下语句:

baseCallback.onBeforeRequest(request);
  • 1

BaseCallback中多定义2个抽象方法

public abstract  void onFailure(Request request, Exception e) ;/** *请求成功时调用此方法 * @param response */public abstract  void onResponse(Response response);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

由于Response的状态有多种,比如成功和失败,所以需要onResponse分解为3个抽象方法

/** * * 状态码大于200,小于300 时调用此方法 * @param response * @param t * @throws */public abstract void onSuccess(Response response,T t) ;/** * 状态码400,404,403,500等时调用此方法 * @param response * @param code * @param e */public abstract void onError(Response response, int code,Exception e) ;/** * Token 验证失败。状态码401,402,403 等时调用此方法 * @param response * @param code */public abstract void onTokenError(Response response, int code);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

response.body.string()方法返回的都是String类型,而我们需要显示的数据其实是对象,所以我们就想抽取出方法,直接返回对象,由于我们不知道对象的类型是什么,所以我们在BaseCallback中使用范型

public abstract class BaseCallback<T>  
  • 1

BaseCallback中需要将泛型转换为Type,所以要声明Type类型

public   Type mType;
  • 1

BaseCallback中需要如下一段代码,将泛型T转换为Type类型

static Type getSuperclassTypeParameter(Class<?> subclass){    Type superclass = subclass.getGenericSuperclass();    if (superclass instanceof Class)    {        throw new RuntimeException("Missing type parameter.");    }    ParameterizedType parameterized = (ParameterizedType) superclass;    return $Gson$Types.canonicalize(parameterized.getActualTypeArguments()[0]);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在BaseCallback的构造函数中进行mType进行赋值

public BaseCallback(){    mType = getSuperclassTypeParameter(getClass());}
  • 1
  • 2
  • 3
  • 4

OkHttpUtils中doRequest方法的onFailure与onResponse方法会相应的去调用baseCallback的方法

mHttpClient.newCall(request).enqueue(new Callback() {    @Override    public void onFailure(Call call, IOException e) {        baseCallback.onFailure(request,e);    }    @Override    public void onResponse(Call call, Response response) throws IOException {        if(response.isSuccessful()) {            baseCallback.onSuccess(response,null);        }else {            baseCallback.onError(response,response.code(),null);        }        /*mGson.fromJson(response.body().string(),baseCallback.mType);*/    }});
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

onResponse方法中成功的情况又有区分,根据mType的类型不同有相应的处理逻辑,同时还要考虑Gson解析错误的情况

@Overridepublic void onResponse(Call call, Response response) throws IOException {    if(response.isSuccessful()) {        String resultStr = response.body().string();        if (baseCallback.mType == String.class){            baseCallback.onSuccess(response,resultStr);        }        else {            try {                Object obj = mGson.fromJson(resultStr, baseCallback.mType);                baseCallback.onSuccess(response,obj);            }            catch (com.google.gson.JsonParseException e){ // Json解析的错误                baseCallback.onError(response,response.code(),e);            }        }    }else {        baseCallback.onError(response,response.code(),null);    }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

构造函数中进行一些全局变量的初始化的操作,还有一些超时的设计

private OkHttpUtils() {    mHttpClient = new OkHttpClient();    OkHttpClient.Builder builder = mHttpClient.newBuilder();    builder.connectTimeout(10, TimeUnit.SECONDS);    builder.readTimeout(10,TimeUnit.SECONDS);    builder.writeTimeout(30,TimeUnit.SECONDS);    mGson = new Gson();    };
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

静态代码块初始化OkHttpUtils对象

static {    mInstance = new OkHttpUtils();}
  • 1
  • 2
  • 3

在okHttpUtils内,需要创建handler进行UI界面的更新操作,创建callbackSuccess方法

private void callbackSuccess(final  BaseCallback callback , final Response response, final Object obj ){    mHandler.post(new Runnable() {        @Override        public void run() {            callback.onSuccess(response, obj);        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

doRequest方法的onResponse方法也进行相应的改写

if (baseCallback.mType == String.class){    /*baseCallback.onSuccess(response,resultStr);*/    callbackSuccess(baseCallback,response,resultStr);}
  • 1
  • 2
  • 3
  • 4
  • 5

创建callbackError方法

private void callbackError(final BaseCallback callback, final Response response, final Exception e) {    mHandler.post(new Runnable() {        @Override        public void run() {            callback.onError(response, response.code(), e);        }    });}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

将doRequest方法的onResponse方法中的baseCallback.onError(response,response.code(),e);替换为callbackError(baseCallback,response,e);方法

@Overridepublic void onResponse(Call call, Response response) throws IOException {    if(response.isSuccessful()) {        String resultStr = response.body().string();        if (baseCallback.mType == String.class){            /*baseCallback.onSuccess(response,resultStr);*/            callbackSuccess(baseCallback,response,resultStr);        }        else {            try {                Object obj = mGson.fromJson(resultStr, baseCallback.mType);                /*baseCallback.onSuccess(response,obj);*/                callbackSuccess(baseCallback,response,obj);            }            catch (com.google.gson.JsonParseException e){ // Json解析的错误                /*baseCallback.onError(response,response.code(),e);*/                callbackError(baseCallback,response,e);            }        }    }else {        callbackError(baseCallback,response,null);        /*baseCallback.onError(response,response.code(),null);*/    }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

至此,我们的封装基本完成。

OkHttp3源码分析

请求处理分析 
当我们要请求网络的时候我们需要用OkHttpClient.newCall(request)进行execute或者enqueue操作,当我们调用newCall时:

/** * Prepares the {@code request} to be executed at some point in the future. */@Override public Call newCall(Request request) {  return new RealCall(this, request);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

实际返回的是一个RealCall类,我们调用enqueue异步请求网络实际上是调用了RealCall的enqueue方法:

@Override public void enqueue(Callback responseCallback) {  synchronized (this) {    if (executed) throw new IllegalStateException("Already Executed");    executed = true;  }  client.dispatcher().enqueue(new AsyncCall(responseCallback));}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

最终的请求是dispatcher来完成的。

Dispatcher任务调度

Dispatcher的本质是异步请求的管理器,控制最大请求并发数和单个主机的最大并发数,并持有一个线程池负责执行异步请求。对同步的请求只是用作统计。他是如何做到控制并发呢,其实原理就在上面的2个execute代码里面,真正网络请求执行前后会调用executed和finished方法,而对于AsyncCall的finished方法后,会根据当前并发数目选择是否执行队列中等待的AsyncCall。并且如果修改Dispatcher的maxRequests或者maxRequestsPerHost也会触发这个过程。 
Dispatcher主要用于控制并发的请求,它主要维护了以下变量:

/** 最大并发请求数*/private int maxRequests = 64;/** 每个主机最大请求数*/private int maxRequestsPerHost = 5;/** 消费者线程池 */private ExecutorService executorService;/** 将要运行的异步请求队列 */private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();/**正在运行的异步请求队列 */private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();/** 正在运行的同步请求队列 */private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

构造函数

public Dispatcher(ExecutorService executorService) {  this.executorService = executorService;}public Dispatcher() {}public synchronized ExecutorService executorService() {  if (executorService == null) {    executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,        new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));  }  return executorService;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

Dispatcher有两个构造函数,可以使用自己设定线程池,如果没有设定线程池则会在请求网络前自己创建线程池,这个线程池类似于CachedThreadPool比较适合执行大量的耗时比较少的任务。

异步请求

synchronized void enqueue(AsyncCall call) {  if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {    runningAsyncCalls.add(call);    executorService().execute(call);  } else {    readyAsyncCalls.add(call);  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

当正在运行的异步请求队列中的数量小于64并且正在运行的请求主机数小于5时则把请求加载到runningAsyncCalls中并在线程池中执行,否则就再入到readyAsyncCalls中进行缓存等待。

AsyncCall 
线程池中传进来的参数就是AsyncCall它是RealCall的内部类,内部也实现了execute方法:

 @Override protected void execute() {    boolean signalledCallback = false;    try {      Response response = getResponseWithInterceptorChain();      if (retryAndFollowUpInterceptor.isCanceled()) {        signalledCallback = true;        responseCallback.onFailure(RealCall.this, new IOException("Canceled"));      } else {        signalledCallback = true;        responseCallback.onResponse(RealCall.this, response);      }    } catch (IOException e) {      if (signalledCallback) {        // Do not signal the callback twice!        Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);      } else {        responseCallback.onFailure(RealCall.this, e);      }    } finally {      client.dispatcher().finished(this);    }  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

首先我们来看看最后一行, 无论这个请求的结果如何都会执行client.dispatcher().finished(this);

/** Used by {@code AsyncCall#run} to signal completion. */void finished(AsyncCall call) {  finished(runningAsyncCalls, call, true);}/** Used by {@code Call#execute} to signal completion. */void finished(RealCall call) {  finished(runningSyncCalls, call, false);}private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {  int runningCallsCount;  Runnable idleCallback;  synchronized (this) {    if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");    if (promoteCalls) promoteCalls();    runningCallsCount = runningCallsCount();    idleCallback = this.idleCallback;  }  if (runningCallsCount == 0 && idleCallback != null) {    idleCallback.run();  }}finished方法将此次请求从runningAsyncCalls移除后还执行了promoteCalls方法:private void promoteCalls() {  if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.  if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.  for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {    AsyncCall call = i.next();    if (runningCallsForHost(call) < maxRequestsPerHost) {      i.remove();      runningAsyncCalls.add(call);      executorService().execute(call);    }    if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

可以看到最关键的点就是会从readyAsyncCalls取出下一个请求,并加入runningAsyncCalls中并交由线程池处理。好了让我们再回到上面的AsyncCall的execute方法,我们会发getResponseWithInterceptorChain方法返回了Response,很明显这是在请求网络。

Interceptor拦截器 
在回到RealCall中,我们看到无论是execute还是enqueue,真正的Response是通过这个函数getResponseWithInterceptorChain获取的,其他的代码都是用作控制与回调。而这里就是真正请求的入口,也是到了OkHttp的一个很精彩的设计:Interceptor与Chain 
看一下RealCall中的getResponseWithInterceptorChain方法

private Response getResponseWithInterceptorChain() throws IOException {  // Build a full stack of interceptors.  List<Interceptor> interceptors = new ArrayList<>();  interceptors.addAll(client.interceptors());  interceptors.add(retryAndFollowUpInterceptor);  interceptors.add(new BridgeInterceptor(client.cookieJar()));  interceptors.add(new CacheInterceptor(client.internalCache()));  interceptors.add(new ConnectInterceptor(client));  if (!retryAndFollowUpInterceptor.isForWebSocket()) {    interceptors.addAll(client.networkInterceptors());  }  interceptors.add(new CallServerInterceptor(      retryAndFollowUpInterceptor.isForWebSocket()));  Interceptor.Chain chain = new RealInterceptorChain(      interceptors, null, null, null, 0, originalRequest);  return chain.proceed(originalRequest);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

这也是与旧版本不一致的地方,在3.4.x以前,没有这些内部的这些拦截器,只有用户的拦截器与网络拦截器。而Request和Response是通过HttpEngine来完成的。在RealCall实现了用户拦截器与RetryAndFollowUp的过程,而在HttpEngine内部处理了请求转换、Cookie、Cache、网络拦截器、连接网络的过程。值得一提的是,在旧版是获取到Response后调用网络拦截器的拦截。 
而在这里,RealInterceptorChain会递归的创建并以此调用拦截器,去掉诸多异常,简化版代码如下:

public Response proceed(Request request, StreamAllocation streamAllocation, HttpStream httpStream,    Connection connection) throws IOException {  if (index >= interceptors.size()) throw new AssertionError();  calls++;  // If we already have a stream, confirm that the incoming request will use it.  if (this.httpStream != null && !sameConnection(request.url())) {    throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)        + " must retain the same host and port");  }  // If we already have a stream, confirm that this is the only call to chain.proceed().  if (this.httpStream != null && calls > 1) {    throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)        + " must call proceed() exactly once");  }  // Call the next interceptor in the chain.  RealInterceptorChain next = new RealInterceptorChain(      interceptors, streamAllocation, httpStream, connection, index + 1, request);  Interceptor interceptor = interceptors.get(index);  Response response = interceptor.intercept(next);  // Confirm that the next interceptor made its required call to chain.proceed().  if (httpStream != null && index + 1 < interceptors.size() && next.calls != 1) {    throw new IllegalStateException("network interceptor " + interceptor        + " must call proceed() exactly once");  }  // Confirm that the intercepted response isn't null.  if (response == null) {    throw new NullPointerException("interceptor " + interceptor + " returned null");  }  return response;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

Chain与Interceptor会互相递归调用,直到链的尽头。 
我们看到,通过职责链模式,清楚地切开了不同的逻辑,每个拦截器完成自己的职责,从而完成用户的网络请求。 
大概流程是: 
1)先经过用户拦截器 
2)RetryAndFollowUpInterceptor负责自动重试和进行必要的重定向 
3)BridgeIntercetor负责将用户Request转换成一个实际的网络请求的Request,再调用下层的拦截器获取Response,最后再将网络Response转换成用户的Reponse 
4)CacheInterceptor负责控制缓存 
5)ConnectInterceptor负责进行连接主机 
6)网络拦截器进行拦截 
7)CallServerInterceptor是真正和服务器通信,完成http请求

连接与通信 
在RetryAndFollowUpInterceptor中,会创建StreamAllocation,然后交给下游的ConnectInterceptor

@Override public Response intercept(Chain chain) throws IOException {  RealInterceptorChain realChain = (RealInterceptorChain) chain;  Request request = realChain.request();  StreamAllocation streamAllocation = realChain.streamAllocation();  // We need the network to satisfy this request. Possibly for validating a conditional GET.  boolean doExtensiveHealthChecks = !request.method().equals("GET");  HttpStream httpStream = streamAllocation.newStream(client, doExtensiveHealthChecks);  RealConnection connection = streamAllocation.connection();  return realChain.proceed(request, streamAllocation, httpStream, connection);}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

这里会创建一个HttpStream,并且取到一个RealConnection,继续交给下游的CallServerInterceptor。 
我们跟踪进去看看,StreamAllocation里面做了什么

public HttpStream newStream(OkHttpClient client, boolean doExtensiveHealthChecks) {  int connectTimeout = client.connectTimeoutMillis();  int readTimeout = client.readTimeoutMillis();  int writeTimeout = client.writeTimeoutMillis();  boolean connectionRetryEnabled = client.retryOnConnectionFailure();  try {    RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,        writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);    HttpStream resultStream;    if (resultConnection.framedConnection != null) {      resultStream = new Http2xStream(client, this, resultConnection.framedConnection);    } else {      resultConnection.socket().setSoTimeout(readTimeout);      resultConnection.source.timeout().timeout(readTimeout, MILLISECONDS);      resultConnection.sink.timeout().timeout(writeTimeout, MILLISECONDS);      resultStream = new Http1xStream(          client, this, resultConnection.source, resultConnection.sink);    }    synchronized (connectionPool) {      stream = resultStream;      return resultStream;    }  } catch (IOException e) {    throw new RouteException(e);  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

这里的代码逻辑是这样的,找一个健康的连接,设置超时时间,然后根据协议创建一个HttpStream并返回。 
继续跟进去看findHealthyConnection:

private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,    int writeTimeout, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks)    throws IOException {  while (true) {    RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,        connectionRetryEnabled);    // If this is a brand new connection, we can skip the extensive health checks.    synchronized (connectionPool) {      if (candidate.successCount == 0) {        return candidate;      }    }    // Do a (potentially slow) check to confirm that the pooled connection is still good. If it    // isn't, take it out of the pool and start again.    if (!candidate.isHealthy(doExtensiveHealthChecks)) {      noNewStreams();      continue;    }    return candidate;  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

上面的逻辑也很简单,在findConnection中找一个连接,然后做健康检查,如果不健康就回收,并再次循环,那么真正寻找连接的代码就在findConnection里面了:

/** * Returns a connection to host a new stream. This prefers the existing connection if it exists, * then the pool, finally building a new connection. */private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,    boolean connectionRetryEnabled) throws IOException {  Route selectedRoute;  synchronized (connectionPool) {    if (released) throw new IllegalStateException("released");    if (stream != null) throw new IllegalStateException("stream != null");    if (canceled) throw new IOException("Canceled");    RealConnection allocatedConnection = this.connection;    if (allocatedConnection != null && !allocatedConnection.noNewStreams) {      return allocatedConnection;    }    // Attempt to get a connection from the pool.    RealConnection pooledConnection = Internal.instance.get(connectionPool, address, this);    if (pooledConnection != null) {      this.connection = pooledConnection;      return pooledConnection;    }    selectedRoute = route;  }  if (selectedRoute == null) {    selectedRoute = routeSelector.next();    synchronized (connectionPool) {      route = selectedRoute;      refusedStreamCount = 0;    }  }  RealConnection newConnection = new RealConnection(selectedRoute);  acquire(newConnection);  synchronized (connectionPool) {    Internal.instance.put(connectionPool, newConnection);    this.connection = newConnection;    if (canceled) throw new IOException("Canceled");  }  newConnection.connect(connectTimeout, readTimeout, writeTimeout, address.connectionSpecs(),      connectionRetryEnabled);  routeDatabase().connected(newConnection.route());  return newConnection;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

这里大概分成分成3大步: 
1)如果当前有连接并且符合要求的话,就直接返回 
2)如果线程池能取到一个符合要求的连接的话,就直接返回 
3)如果Route为空,从RouteSelector取一个Route,然后新建一个RealConnection,并放入ConnectionPool,随后调用connect,再返回

也就是说不管当前走的是步骤1还是2,一开始一定是从3开始的,也就是在RealConnection的connect中真正完成了socket连接。 
connect里面代码比较长,真正要做的就是一件事,如果是https请求并且是http代理,则建立隧道连接,隧道连接请参考RFC2817,否则建立普通连接。 
这两者都调用了2个函数:connectSocket(connectTimeout, readTimeout); establishProtocol(readTimeout, writeTimeout, connectionSpecSelector); 
但是隧道连接则多了一个代理认证的过程,可能会反复的connectSocket和构造请求。 
看一下connectSocket:

private void connectSocket(int connectTimeout, int readTimeout) throws IOException {  Proxy proxy = route.proxy();  Address address = route.address();  rawSocket = proxy.type() == Proxy.Type.DIRECT || proxy.type() == Proxy.Type.HTTP      ? address.socketFactory().createSocket()      : new Socket(proxy);  rawSocket.setSoTimeout(readTimeout);  try {    Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);  } catch (ConnectException e) {    throw new ConnectException("Failed to connect to " + route.socketAddress());  }  source = Okio.buffer(Okio.source(rawSocket));  sink = Okio.buffer(Okio.sink(rawSocket));}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

就是根据Route来创建socket,在connect,随后将rawSocket的InputStream与OutputStream包装成Source与Sink。这里提一下,OkHttp是依赖Okio的,Okio封装了Java的IO API,如这里的Source与Sink,非常简洁实用。

而establishProtocol里,如果是https则走TLS协议,生成一个SSLSocket,并进行握手和验证,同时如果是HTTP2或者SPDY3的话,则生成一个FrameConnection。这里不再多提,HTTP2和HTTP1.X大相径庭,我们这里主要是分析HTTP1.X的连接,后面有机会我们会单独开篇讲HTTP2。同时TLS相关的话题这里也一并略过,想了解的朋友可以看一看相应的Java API和HTTPS连接的资料。

再回到StreamAllcation.newStream的代码resultStream = new Http1xStream( client, this, resultConnection.source, resultConnection.sink);实质上HttpStream其实就是Request和Response读写Socket的抽象,我们看到Http1xStream取到了Socket输入输出流,随后在CallServerInterceptor可以拿来做读写。

我们看CallServerInterceptor做了什么:

@Override public Response intercept(Chain chain) throws IOException {  HttpStream httpStream = ((RealInterceptorChain) chain).httpStream();  StreamAllocation streamAllocation = ((RealInterceptorChain) chain).streamAllocation();  Request request = chain.request();  long sentRequestMillis = System.currentTimeMillis();  httpStream.writeRequestHeaders(request);  if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {    Sink requestBodyOut = httpStream.createRequestBody(request, request.body().contentLength());    BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);    request.body().writeTo(bufferedRequestBody);    bufferedRequestBody.close();  }  httpStream.finishRequest();  Response response = httpStream.readResponseHeaders()      .request(request)      .handshake(streamAllocation.connection().handshake())      .sentRequestAtMillis(sentRequestMillis)      .receivedResponseAtMillis(System.currentTimeMillis())      .build();  if (!forWebSocket || response.code() != 101) {    response = response.newBuilder()        .body(httpStream.openResponseBody(response))        .build();  }  if ("close".equalsIgnoreCase(response.request().header("Connection"))      || "close".equalsIgnoreCase(response.header("Connection"))) {    streamAllocation.noNewStreams();  }  int code = response.code();  if ((code == 204 || code == 205) && response.body().contentLength() > 0) {    throw new ProtocolException(        "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());  }  return response;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

CallServerInterceptor顾名思义,就是真正和Server进行通信的地方。这里也是按照HTTP协议,依次写入请求头,还有根据情况决定是否写入请求体。随后读响应头闭构造一个Response。 
里面具体是如何实现呢,我们看Http1xStream: 
首先是写头:

@Override public void writeRequestHeaders(Request request) throws IOException {  String requestLine = RequestLine.get(      request, streamAllocation.connection().route().proxy().type());  writeRequest(request.headers(), requestLine);}
  • 1
  • 2
  • 3
  • 4
  • 5

构造好请求行,进入writeRequest:

/** Returns bytes of a request header for sending on an HTTP transport. */public void writeRequest(Headers headers, String requestLine) throws IOException {  if (state != STATE_IDLE) throw new IllegalStateException("state: " + state);  sink.writeUtf8(requestLine).writeUtf8("\r\n");  for (int i = 0, size = headers.size(); i < size; i++) {    sink.writeUtf8(headers.name(i))        .writeUtf8(": ")        .writeUtf8(headers.value(i))        .writeUtf8("\r\n");  }  sink.writeUtf8("\r\n");  state = STATE_OPEN_REQUEST_BODY;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

这里就一目了然了,就是一行行的写请求行和请求头到sink中 
再看readResponse:

/** Parses bytes of a response header from an HTTP transport. */public Response.Builder readResponse() throws IOException {  if (state != STATE_OPEN_REQUEST_BODY && state != STATE_READ_RESPONSE_HEADERS) {    throw new IllegalStateException("state: " + state);  }  try {    while (true) {      StatusLine statusLine = StatusLine.parse(source.readUtf8LineStrict());      Response.Builder responseBuilder = new Response.Builder()          .protocol(statusLine.protocol)          .code(statusLine.code)          .message(statusLine.message)          .headers(readHeaders());      if (statusLine.code != HTTP_CONTINUE) {        state = STATE_OPEN_RESPONSE_BODY;        return responseBuilder;      }    }  } catch (EOFException e) {    // Provide more context if the server ends the stream before sending a response.    IOException exception = new IOException("unexpected end of stream on " + streamAllocation);    exception.initCause(e);    throw exception;  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

也是一样的,从source中读请求行和请求头 
最后看openResponseBody:

@Override public ResponseBody openResponseBody(Response response) throws IOException {  Source source = getTransferStream(response);  return new RealResponseBody(response.headers(), Okio.buffer(source));}
  • 1
  • 2
  • 3
  • 4

这里说一下就是根据请求的响应把包裹InputStream的source再次封装,里面做一些控制逻辑,然后再封装成ResponseBody。 
例如FiexdLengthSource,就是期望获取到byte的长度是固定的值:

/** An HTTP body with a fixed length specified in advance. */private class FixedLengthSource extends AbstractSource {  private long bytesRemaining;  public FixedLengthSource(long length) throws IOException {    bytesRemaining = length;    if (bytesRemaining == 0) {      endOfInput(true);    }  }  @Override public long read(Buffer sink, long byteCount) throws IOException {    if (byteCount < 0) throw new IllegalArgumentException("byteCount < 0: " + byteCount);    if (closed) throw new IllegalStateException("closed");    if (bytesRemaining == 0) return -1;    long read = source.read(sink, Math.min(bytesRemaining, byteCount));    if (read == -1) {      endOfInput(false); // The server didn't supply the promised content length.      throw new ProtocolException("unexpected end of stream");    }    bytesRemaining -= read;    if (bytesRemaining == 0) {      endOfInput(true);    }    return read;  }  @Override public void close() throws IOException {    if (closed) return;    if (bytesRemaining != 0 && !Util.discard(this, DISCARD_STREAM_TIMEOUT_MILLIS, MILLISECONDS)) {      endOfInput(false);    }    closed = true;  }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

当读完期望的长度时就把这个RealConnection回收,如果少于期望的长度则抛异常。

ConnectionPool 
到了OkHttp3时代,ConnectionPool就是每个Client独享的了,我们刚才提到了ConnectionPool,那么他到底是如何运作呢。 
ConnectionPool持有一个静态的线程池。 
StreamAllocation不管通过什么方式,在获取到RealConnection后,RealConnection会添加一个对StreamAllocation的引用。 
在每个RealConnection加入ConnectionPool后,如果当前没有在清理,就会把cleanUpRunnable加入线程池。 
cleanUpRunnable里面是一个while(true),一个循环包括: 
调用一次cleanUp方法进行清理并返回一个long, 如果是-1则退出,否则调用wait方法等待这个long值的时间 
cleanUp代码如下:

ong cleanup(long now) {  int inUseConnectionCount = 0;  int idleConnectionCount = 0;  RealConnection longestIdleConnection = null;  long longestIdleDurationNs = Long.MIN_VALUE;  // Find either a connection to evict, or the time that the next eviction is due.  synchronized (this) {    for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {      RealConnection connection = i.next();      // If the connection is in use, keep searching.      if (pruneAndGetAllocationCount(connection, now) > 0) {        inUseConnectionCount++;        continue;      }      idleConnectionCount++;      // If the connection is ready to be evicted, we're done.      long idleDurationNs = now - connection.idleAtNanos;      if (idleDurationNs > longestIdleDurationNs) {        longestIdleDurationNs = idleDurationNs;        longestIdleConnection = connection;      }    }    if (longestIdleDurationNs >= this.keepAliveDurationNs        || idleConnectionCount > this.maxIdleConnections) {      // We've found a connection to evict. Remove it from the list, then close it below (outside      // of the synchronized block).      connections.remove(longestIdleConnection);    } else if (idleConnectionCount > 0) {      // A connection will be ready to evict soon.      return keepAliveDurationNs - longestIdleDurationNs;    } else if (inUseConnectionCount > 0) {      // All connections are in use. It'll be at least the keep alive duration 'til we run again.      return keepAliveDurationNs;    } else {      // No connections, idle or in use.      cleanupRunning = false;      return -1;    }  }  closeQuietly(longestIdleConnection.socket());  // Cleanup again immediately.  return 0;}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

遍历每一个RealConnection,通过引用数目确定哪些是空闲的,哪些是在使用中,同时找到空闲时间最长的RealConnection。 
如果空闲数目超过最大空闲数或者空闲时间超过最大空闲时间,则清理掉这个RealConnection,并返回0,表示需要立刻再次清理 
否则如果空闲的数目大于0个,则等待最大空闲时间-已有的最长空闲时间 
否则如果使用中的数目大于0,则等待最大空闲时间 
否则 返回 -1,并标识退出清除状态 
同时如果某个RealConnection空闲后,会进入ConnectionPool.connectionBecameIdle方法,如果不可被复用,则被移除,否则立刻唤醒上面cleanUp的wait,再次清理,因为可能超过了最大空闲数目 
这样通过一个静态的线程池,ConnectionPool做到了每个实例定期清理,保证不会超过最大空闲时间和最大空闲数目的策略。

OkHttp3分析就到此结束了。

FROM:http://blog.csdn.net/u012124438/article/details/54236967

原创粉丝点击