200行Python代码实现2048

来源:互联网 发布:mac蓝牙发送文件 编辑:程序博客网 时间:2024/06/03 16:52

200行Python代码实现2048

2048原版游戏地址:http://gabrielecirulli.github.io/2048
创造游戏文件2048.py
首先导入需要的包:

import cursesfrom random import randrange, choicefrom collections import defaultdict

1.主逻辑

1.1 用户行为

所有的有效输入都可以转换为”上,下,左,右,游戏重置,退出”这六种行为,用 actions 表示

actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']

有效输入键是最常见的 W(上),A(左),S(下),D(右),R(重置),Q(退出),这里要考虑到大写键开启的情况,获得有效键值列表:

letter_codes = [ord(ch) for ch in 'WASDRQwasdrq']

将输入与行为进行关联:

actions_dict = dict(zip(letter_codes, actions * 2))

1.2 状态机

处理游戏主逻辑的时候我们会用到一种十分常用的技术:状态机,或者更准确的说是有限状态机(FSM)

你会发现 2048 游戏很容易就能分解成几种状态的转换。
image
state存储当前状态,state_actions这个词典变量作为状态转换的规则,它的key是状态,value是返回下一个状态的函数:

  • Init:init()
    • Game
  • Game:game()
    • Game
    • Win
    • GameOver
    • Exit
  • Win:lambda:not_game(‘Win’)
    • Init
    • Exit
  • Gameover:lambda:not_game(‘Gameover’)
    • Init
    • Exit
  • Exit:退出循环

状态机会不断循环,直到达到 Exit 终结状态结束程序。

下面是经过提取的主逻辑的代码,会在后面进行补全:

def main(stdscr):    def init():        #重置游戏棋盘        return 'Game'    def not_game(state):        #画出 GameOver 或者 Win 的界面        #读取用户输入得到action,判断是重启游戏还是结束游戏        responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环        responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态        return responses[action]    def game():        #画出当前棋盘状态        #读取用户输入得到action        if action == 'Restart':            return 'Init'        if action == 'Exit':            return 'Exit'        #if 成功移动了一步:            if 游戏胜利了:                return 'Win'            if 游戏失败了:                return 'Gameover'        return 'Game'    state_actions = {            'Init': init,            'Win': lambda: not_game('Win'),            'Gameover': lambda: not_game('Gameover'),            'Game': game        }    state = 'Init'    #状态机开始循环    while state != 'Exit':        state = state_actions[state]()

2.用户输入处理

阻塞+循环,直到获得用户有效输入才返回对应行为:

def get_user_action(keyboard):        char = "N"    while char not in actions_dict:            char = keyboard.getch()    return actions_dict[char]

3.矩阵转置与矩阵逆转

加入这两个操作可以大大节省我们的代码量,减少重复劳动,看到后面就知道了。

矩阵转置:

def transpose(field):    return [list(row) for row in zip(*field)]

矩阵逆转(不是逆矩阵):

def invert(field):    return [row[::-1] for row in field]

4.创建棋盘

初始化棋盘的参数,可以指定棋盘的高和宽以及游戏胜利条件,默认是最经典的 4x4~2048。

class GameField(object):        def __init__(self, height=4, width=4, win=2048):            self.height = height       #高            self.width = width         #宽            self.win_value = 2048      #过关分数            self.score = 0             #当前分数            self.highscore = 0         #最高分            self.reset()               #棋盘重置

4.1 棋盘操作

随机生成一个2或者4

def spawn(self):        new_element = 4 if randrange(100) > 89 else 2        (i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0])        self.field[i][j] = new_element

重置棋盘

def reset(self):    if self.score > self.highscore:        self.highscore = self.score    self.score = 0    self.field = [[0 for i in range(self.width)] for j in range(self.height)]    self.spawn()    self.spawn()

一行向左合并
(注:这一操作是在move内定义的,拆出来是为了方便阅读)

def move_row_left(row):    def tighten(row): # 把零散的非零单元挤到一块        new_row = [i for i in row if i != 0]        new_row += [0 for i in range(len(row) - len(new_row))]        return new_row    def merge(row): # 对邻近元素进行合并        pair = False        new_row = []        for i in range(len(row)):            if pair:                new_row.append(2 * row[i])                self.score += 2 * row[i]                pair = False            else:                if i + 1 < len(row) and row[i] == row[i + 1]:                    pair = True                    new_row.append(0)                else:                    new_row.append(row[i])        assert len(new_row) == len(row)        return new_row    #先挤到一块再合并再挤到一块    return tighten(merge(tighten(row)))

棋盘走一步
通过对矩阵进行转置与逆转,可以直接从左移得到其余三个方向的移动操作

def move(self, direction):    def move_row_left(row):        #一行向左合并    moves = {}    moves['Left']  = lambda field: [move_row_left(row) for row in field]    moves['Right'] = lambda field: invert(moves['Left'](invert(field)))    moves['Up']    = lambda field: transpose(moves['Left'](transpose(field)))    moves['Down']  = lambda field: transpose(moves['Right'](transpose(field)))    if direction in moves:        if self.move_is_possible(direction):            self.field = moves[direction](self.field)            self.spawn()            return True        else:            return False

判断输赢

def is_win(self):    return any(any(i >= self.win_value for i in row) for row in self.field)def is_gameover(self):    return not any(self.move_is_possible(move) for move in actions)

判断能否移动

def move_is_possible(self, direction):    def row_is_left_movable(row):         def change(i):            if row[i] == 0 and row[i + 1] != 0: # 可以移动                return True            if row[i] != 0 and row[i + 1] == row[i]: # 可以合并                return True            return False        return any(change(i) for i in range(len(row) - 1))    check = {}    check['Left']  = lambda field: any(row_is_left_movable(row) for row in field)    check['Right'] = lambda field: check['Left'](invert(field))    check['Up']    = lambda field: check['Left'](transpose(field))    check['Down']  = lambda field: check['Right'](transpose(field))    if direction in check:        return check[direction](self.field)    else:        return False

4.2 绘制游戏界面

(注:这一步是在棋盘内定义的)

def draw(self, screen):    help_string1 = '(W)Up (S)Down (A)Left (D)Right'    help_string2 = '     (R)Restart (Q)Exit'    gameover_string = '           GAME OVER'    win_string = '          YOU WIN!'    def cast(string):        screen.addstr(string + '\n')    #绘制水平分割线    def draw_hor_separator():        line = '+' + ('+------' * self.width + '+')[1:]        separator = defaultdict(lambda: line)        if not hasattr(draw_hor_separator, "counter"):            draw_hor_separator.counter = 0        cast(separator[draw_hor_separator.counter])        draw_hor_separator.counter += 1    def draw_row(row):        cast(''.join('|{: ^5} '.format(num) if num > 0 else '|      ' for num in row) + '|')    screen.clear()    cast('SCORE: ' + str(self.score))    if 0 != self.highscore:        cast('HIGHSCORE: ' + str(self.highscore))    for row in self.field:        draw_hor_separator()        draw_row(row)    draw_hor_separator()    if self.is_win():        cast(win_string)    else:        if self.is_gameover():            cast(gameover_string)        else:            cast(help_string1)    cast(help_string2)

5.完成主逻辑

完成以上工作后,我们就可以补完主逻辑了!

def main(stdscr):    def init():        #重置游戏棋盘        game_field.reset()        return 'Game'    def not_game(state):        #画出 GameOver 或者 Win 的界面        game_field.draw(stdscr)        #读取用户输入得到action,判断是重启游戏还是结束游戏        action = get_user_action(stdscr)        responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环        responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态        return responses[action]    def game():        #画出当前棋盘状态        game_field.draw(stdscr)        #读取用户输入得到action        action = get_user_action(stdscr)        if action == 'Restart':            return 'Init'        if action == 'Exit':            return 'Exit'        if game_field.move(action): # move successful            if game_field.is_win():                return 'Win'            if game_field.is_gameover():                return 'Gameover'        return 'Game'    state_actions = {            'Init': init,            'Win': lambda: not_game('Win'),            'Gameover': lambda: not_game('Gameover'),            'Game': game        }    curses.use_default_colors()    game_field = GameField(win=2048)    state = 'Init'    #状态机开始循环    while state != 'Exit':        state = state_actions[state]()

6.运行

填上最后一行代码:

curses.wrapper(main)

运行python 2048.py查看结果。
1.jpg

全部代码

#-*- coding:utf-8 -*-import cursesfrom random import randrange, choice # generate and place new tilefrom collections import defaultdictletter_codes = [ord(ch) for ch in 'WASDRQwasdrq']actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']actions_dict = dict(zip(letter_codes, actions * 2))def get_user_action(keyboard):        char = "N"    while char not in actions_dict:            char = keyboard.getch()    return actions_dict[char]def transpose(field):    return [list(row) for row in zip(*field)]def invert(field):    return [row[::-1] for row in field]class GameField(object):    def __init__(self, height=4, width=4, win=2048):        self.height = height        self.width = width        self.win_value = win        self.score = 0        self.highscore = 0        self.reset()    def reset(self):        if self.score > self.highscore:            self.highscore = self.score        self.score = 0        self.field = [[0 for i in range(self.width)] for j in range(self.height)]        self.spawn()        self.spawn()    def move(self, direction):        def move_row_left(row):            def tighten(row): # squeese non-zero elements together                new_row = [i for i in row if i != 0]                new_row += [0 for i in range(len(row) - len(new_row))]                return new_row            def merge(row):                pair = False                new_row = []                for i in range(len(row)):                    if pair:                        new_row.append(2 * row[i])                        self.score += 2 * row[i]                        pair = False                    else:                        if i + 1 < len(row) and row[i] == row[i + 1]:                            pair = True                            new_row.append(0)                        else:                            new_row.append(row[i])                assert len(new_row) == len(row)                return new_row            return tighten(merge(tighten(row)))        moves = {}        moves['Left']  = lambda field:                              \                [move_row_left(row) for row in field]        moves['Right'] = lambda field:                              \                invert(moves['Left'](invert(field)))        moves['Up']    = lambda field:                              \                transpose(moves['Left'](transpose(field)))        moves['Down']  = lambda field:                              \                transpose(moves['Right'](transpose(field)))        if direction in moves:            if self.move_is_possible(direction):                self.field = moves[direction](self.field)                self.spawn()                return True            else:                return False    def is_win(self):        return any(any(i >= self.win_value for i in row) for row in self.field)    def is_gameover(self):        return not any(self.move_is_possible(move) for move in actions)    def draw(self, screen):        help_string1 = '(W)Up (S)Down (A)Left (D)Right'        help_string2 = '     (R)Restart (Q)Exit'        gameover_string = '           GAME OVER'        win_string = '          YOU WIN!'        def cast(string):            screen.addstr(string + '\n')        def draw_hor_separator():            line = '+' + ('+------' * self.width + '+')[1:]            separator = defaultdict(lambda: line)            if not hasattr(draw_hor_separator, "counter"):                draw_hor_separator.counter = 0            cast(separator[draw_hor_separator.counter])            draw_hor_separator.counter += 1        def draw_row(row):            cast(''.join('|{: ^5} '.format(num) if num > 0 else '|      ' for num in row) + '|')        screen.clear()        cast('SCORE: ' + str(self.score))        if 0 != self.highscore:            cast('HIGHSCORE: ' + str(self.highscore))        for row in self.field:            draw_hor_separator()            draw_row(row)        draw_hor_separator()        if self.is_win():            cast(win_string)        else:            if self.is_gameover():                cast(gameover_string)            else:                cast(help_string1)        cast(help_string2)    def spawn(self):        new_element = 4 if randrange(100) > 89 else 2        (i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0])        self.field[i][j] = new_element    def move_is_possible(self, direction):        def row_is_left_movable(row):             def change(i): # true if there'll be change in i-th tile                if row[i] == 0 and row[i + 1] != 0: # Move                    return True                if row[i] != 0 and row[i + 1] == row[i]: # Merge                    return True                return False            return any(change(i) for i in range(len(row) - 1))        check = {}        check['Left']  = lambda field:                              \                any(row_is_left_movable(row) for row in field)        check['Right'] = lambda field:                              \                 check['Left'](invert(field))        check['Up']    = lambda field:                              \                check['Left'](transpose(field))        check['Down']  = lambda field:                              \                check['Right'](transpose(field))        if direction in check:            return check[direction](self.field)        else:            return Falsedef main(stdscr):    def init():        #重置游戏棋盘        game_field.reset()        return 'Game'    def not_game(state):        #画出 GameOver 或者 Win 的界面        game_field.draw(stdscr)        #读取用户输入得到action,判断是重启游戏还是结束游戏        action = get_user_action(stdscr)        responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环        responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态        return responses[action]    def game():        #画出当前棋盘状态        game_field.draw(stdscr)        #读取用户输入得到action        action = get_user_action(stdscr)        if action == 'Restart':            return 'Init'        if action == 'Exit':            return 'Exit'        if game_field.move(action): # move successful            if game_field.is_win():                return 'Win'            if game_field.is_gameover():                return 'Gameover'        return 'Game'    state_actions = {            'Init': init,            'Win': lambda: not_game('Win'),            'Gameover': lambda: not_game('Gameover'),            'Game': game        }    curses.use_default_colors()    # 设置终结状态最大数值为 2048    game_field = GameField(win=2048)    state = 'Init'    #状态机开始循环    while state != 'Exit':        state = state_actions[state]()curses.wrapper(main)