OPENSSL EVP_AES部分翻译

来源:互联网 发布:网站域名后缀有哪些 编辑:程序博客网 时间:2024/06/06 01:57

    需要用到Openssl的AES_128_ECB加密,网络上找了半天资料,没找到想要的,官方资料只有英文,只得硬着头皮上。怕这次读后又忘了,以后如果有需要可能还得再折腾一遍,就翻译下记录在文档上,为防止文档丢失,顺便发到博客上,如果能帮助到有需要的人更好。而且翻译下来感觉确实比单纯的看一下印象深刻。由于还需要工作,只是翻译了对各个相关函数的描述部分。


https://www.openssl.org/docs/manmaster/man3/EVP_aes_128_ecb.html

OpenSSL
Cryptography and SSL/TLS Toolkit

Search
HomeBlogDownloadsDocsNewsPoliciesCommunitySupport
EVP_EncryptInit

NAME

EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_reset, EVP_CIPHER_CTX_free, EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_EncryptInit, EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname, EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length, EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data, EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param, EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb, EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb, EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb, EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_rc4_hmac_md5, EVP_idea_cbc, EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc, EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc, EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc, EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, EVP_rc5_32_12_16_cbc, EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb, EVP_aes_128_cbc, EVP_aes_128_ecb, EVP_aes_128_cfb, EVP_aes_128_ofb, EVP_aes_192_cbc, EVP_aes_192_ecb, EVP_aes_192_cfb, EVP_aes_192_ofb, EVP_aes_256_cbc, EVP_aes_256_ecb, EVP_aes_256_cfb, EVP_aes_256_ofb, EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm, EVP_aes_128_ccm, EVP_aes_192_ccm, EVP_aes_256_ccm, EVP_aes_128_cbc_hmac_sha1, EVP_aes_256_cbc_hmac_sha1, EVP_aes_128_cbc_hmac_sha256, EVP_aes_256_cbc_hmac_sha256, EVP_chacha20, EVP_chacha20_poly1305 - EVP cipher routines

SYNOPSIS

 #include <openssl/evp.h>

 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
 int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);

 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                        ENGINE *impl, unsigned char *key, unsigned char *iv);
 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                       int *outl, unsigned char *in, int inl);
 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                        ENGINE *impl, unsigned char *key, unsigned char *iv);
 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                       int *outl, unsigned char *in, int inl);
 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                       ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
                      int *outl, unsigned char *in, int inl);
 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                     unsigned char *key, unsigned char *iv);
 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                     unsigned char *key, unsigned char *iv);
 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
                    unsigned char *key, unsigned char *iv, int enc);
 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);

 const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
 const EVP_CIPHER *EVP_get_cipherbynid(int nid);
 const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);

 int EVP_CIPHER_nid(const EVP_CIPHER *e);
 int EVP_CIPHER_block_size(const EVP_CIPHER *e);
 int EVP_CIPHER_key_length(const EVP_CIPHER *e)
 int EVP_CIPHER_key_length(const EVP_CIPHER *e);
 int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
 unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
 unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
 int EVP_CIPHER_type(const EVP_CIPHER *ctx);

 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
 void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
 int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
 int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);

 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
DESCRIPTION

The EVP cipher routines are a high level interface to certain symmetric ciphers.
### EVP 加密程序集是一个针对确定的对称加密算法的上层接口
EVP_CIPHER_CTX_new() creates a cipher context.
###EVP_CIPHER_CTX_new() 创建一个加解密的上下文环境

EVP_CIPHER_CTX_free() clears all information from a cipher context and free up any allocated memory associate with it,
###EVP_CIPHER_CTX_free()清除加解密上下文环境的所有信息,并且释放所申请的与其相关的所有内存
including ctx itself. This function should be called after all operations using a cipher are complete so sensitive information
###包括ctx自身。这个函数应该在完成所有的加解密操作后调用,这样一来所有的敏感信息都不会在内存中存留。
does not remain in memory.

EVP_EncryptInit_ex() sets up cipher context ctx for encryption with cipher type from ENGINE impl. ctx must be created before
###EVP_EncryptInit_ex()用引擎实现的加密类型设置加密的上下文环境ctx。 ctx必须在调用这个函数之前创建
calling this function. type is normally supplied by a function such as EVP_aes_256_cbc(). If impl is NULL then the default
                         类型通常通过类似EVP_aes_256_cbc()的函数提供                            如果impl为NULL,则会使用默认
implementation is used. key is the symmetric key to use and iv is the IV to use (if necessary), the actual number of bytes used
###的实现                       Key(秘钥)使用对称秘钥,        iv(初始化向量)  也是相同的(如果有需要iv的话)   实际key 和 IV
for the key and IV depends on the cipher. It is possible to set all parameters to NULL except type in an initial call and
###使用的bytes数量依赖于加密算法                 也可以在初始化时候设置除了类型外的所有参数为空,然后在后续调用中提供参数
supply the remaining parameters in subsequent calls, all of which have type set to NULL. This is done when the default cipher
                                              【 all of which have type set to NULL.】  如果默认加密算法参数不合适就完了【?】
parameters are not appropriate.

EVP_EncryptUpdate() encrypts inl bytes from the buffer in and writes the encrypted version to out. This function can be called
###EVP_EncryptUpdate() 加密buffer中inl长度的bytes,然后将加密结果写到out里面                          这个函数可以调用多次
multiple times to encrypt successive blocks of data. The amount of data written depends on the block alignment of the encrypted
### 去加密连续的数据块                                  译文长度依赖于待加密数据对齐方式
data: as a result the amount of data written may be anything from zero bytes to (inl + cipher_block_size - 1) so out should
### 因此密文长度可以是从0到inl+cipher_block_size-1,                                                              因此out
contain sufficient room. The actual number of bytes written is placed in outl. It also checks if in and out are partially
###应该包含充分的空间     密文的实际长度写入到了outl                            同时也用来检测是否in 和 out有重叠
overlapping, and if they are 0 is returned to indicate failure.
###               如果是将会返回0用来指明加密失败
If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts the "final" data, that is any data that remains in a
###如果启用了填充padding(默认启用),EVP_EncryptFinal_ex()加密的最后data可以是来自某一个block的某些data
partial block. It uses standard block padding (aka PKCS padding) as described in the NOTES section, below. The encrypted final
###            使用如下面Note部分所描述的的标准块填充(aka PKCS padding)                                 最终加密过的数据存放
data is written to out which should have sufficient space for one cipher block. The number of bytes written is placed in outl.
###在out里面,out应该有充足的空间存放一个加密block                              密文长度存放在outl里面
After this function is called the encryption operation is finished and no further calls to EVP_EncryptUpdate() should be made.
###调用这个函数之后加密操作完成,后边不应该在调用它
If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more data and it will return an error if any data
###如果padding是disabled的,EVP_EncryptFinal_ex()不会额外加密任何数据,并且如果数据不是cipher_block_size的整数倍,将会返回错误
remains in a partial block: that is if the total data length is not a multiple of the block size.


EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the corresponding decryption operations.
###EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() 是类似的解密操作
EVP_DecryptFinal() will return an error code if padding is enabled and the final block is not correctly formatted. The
###如果开启了填充而最后一块没有正确的格式化,EVP_DecryptFinal() 将会返回错误
parameters and restrictions are identical to the encryption operations except that if padding is enabled the decrypted data
###参数和限制条件和加密操作完全一样,除了一件事情:如果开启了padding,传给EVP_DecryptUpdate()的存放解密后的数据buffer 应该
buffer out passed to EVP_DecryptUpdate() should have sufficient room for (inl + cipher_block_size) bytes unless the cipher
###有充足的空间inl+cipher_block_size bytes,除非加密block是1,这样在任何情况下inl 长度都是充足的。
block size is 1 in which case inl bytes is sufficient .

EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are functions that can be used for decryption or encryption.
###EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() 这些函数既可以用作加密也可以用作解密
The operation performed depends on the value of the enc parameter. It should be set to 1 for encryption, 0 for decryption and
###具体操作如何执行依赖于enc参数的值,1表示加密,0表示解密,-1不进行任何操作(enc实际的值在前面的调用中提供)
-1 to leave the value unchanged (the actual value of 'enc' being supplied in a previous call).

EVP_CIPHER_CTX_reset() clears all information from a cipher context and free up any allocated memory associate with it, except
###EVP_CIPHER_CTX_reset()从一个加密算法上下文中清除所有信息,并且释放所有申请的有关内存,除了ctx自身
the ctx itself. This function should be called anytime ctx is to be reused for another EVP_CipherInit() / EVP_CipherUpdate() /
###这个函数随时可以被调用,以便被另一个EVP_CipherInit()/EVP_CipherUpdate()/EVP_CipherFinal()调用序列再利用。
EVP_CipherFinal() series of calls.

EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex()
###EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() 和 EVP_EncryptInit_ex(), EVP_DecryptInit_ex()
and EVP_CipherInit_ex() except the ctx parameter does not need to be initialized and they always use the default cipher
###EVP_CipherInit_ex()有类似的行为,除了不需要初始化和总是使用默认实现
implementation.

EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and
###EVP_EncryptFinal(), EVP_DecryptFinal()  EVP_CipherFinal()和EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex()
EVP_CipherFinal_ex(). In previous releases they also cleaned up the ctx, but this is no longer done and EVP_CIPHER_CTX_clean()
###EVP_CipherFinal_ex()完全相同,在前一次的释放中,同样会清除ctx,不过以后不会这样做了,必须通过调用EVP_CIPHER_CTX_clean()
must be called to free any context resources.
###来释放所有相关的资源

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an EVP_CIPHER structure when passed a cipher
###EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()可以返回给出名字,NID或者ASN1_OBJECT作为参数
name, a NID or an ASN1_OBJECT structure.
###所指明的EVP_CIPHER结构体

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when passed an EVP_CIPHER or EVP_CIPHER_CTX structure. The
###EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid()可以用来获取一个EVP_CIPHER 或者 EVP_CIPHER_CTX 结构体的NID
actual NID value is an internal value which may not have a corresponding OBJECT IDENTIFIER.
###实际的NID值是一个内部的值,也许没有相应的OBJECT指示符

EVP_CIPHER_CTX_set_padding() enables or disables padding. This function should be called after the context is set up for
###EVP_CIPHER_CTX_set_padding()用来开启和关闭填充,这个函数应当在通过EVP_EncryptInit_ex()/EVP_DecryptInit_ex()
encryption or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or EVP_CipherInit_ex(). By default encryption
###EVP_CipherInit_ex()设置加密或者解密之后调用                                      默认的加密操作是通过标准块填充,
operations are padded using standard block padding and the padding is checked and removed when decrypting. If the pad parameter
###填充会在解密的时候进行检测和移除               如果填充参数是0,则不会进行填充操作
is zero then no padding is performed, the total amount of data encrypted or decrypted must then be a multiple of the block size
###                               待加密/解密的数据长度必须是块代销的整数倍,否则会发生错误
or an error will occur.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key length of a cipher when passed an EVP_CIPHER or
###EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() 用于获取一个加密算法的密码长度,参数是EVP_CIPHER或者EVP_CIPHER_CTX
EVP_CIPHER_CTX structure. The constant EVP_MAX_KEY_LENGTH is the maximum key length for all ciphers. Note: although
###结构体                     EVP_MAX_KEY_LENGTH常量是所有加密算法的最大密码长度                      注意:虽然
EVP_CIPHER_key_length() is fixed for a given cipher, the value of EVP_CIPHER_CTX_key_length() may be different for variable key
###EVP_CIPHER_key_length()对于一个给定的加密算法是确定的,VP_CIPHER_CTX_key_length()的值在密码长度可变的加密算法中是不同的
length ciphers.

EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx. If the cipher is a fixed length cipher then attempting
###EVP_CIPHER_CTX_set_key_length()用来设定加密算法 ctx的密码长度,如果该加密算法是一个定长加密算法,任何试图设置非正确长度的值
to set the key length to any value other than the fixed value is an error.
###都是错误的

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV length of a cipher when passed an EVP_CIPHER or
###EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() 返回IV(初始化向量)的长度,传入参数是EVP_CIPHER或者
EVP_CIPHER_CTX. It will return zero if the cipher does not use an IV. The constant EVP_MAX_IV_LENGTH is the maximum IV length
###EVP_CIPHER_CTX  如果没有使用IV,将会返回0                    常量EVP_MAX_IV_LENGTH是所有加密算法的最大长度
for all ciphers.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block size of a cipher when passed an EVP_CIPHER or
###EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size()返回一个块的大小,传入参数是EVP_CIPHER或者EVP_CIPHER_CTX
EVP_CIPHER_CTX structure. The constant EVP_MAX_BLOCK_LENGTH is also the maximum block length for all ciphers.
###EVP_MAX_BLOCK_LENGTH是所有加密算法的最大长度

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed cipher or context. This "type" is the actual NID of
###EVP_CIPHER_type() and EVP_CIPHER_CTX_type()返回传入加密算法的类型,也就是NID的值
the cipher OBJECT IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and 128 bit RC2 have the same NID. If the
### 忽略参数,40bit RC2 和128bit RC2 有相同的NID
cipher does not have an object identifier or does not have ASN1 support this function will return NID_undef.
###如果没有对象指示符或者不被ASN1(https://baike.baidu.com/item/ASN.1/498523?fr=aladdin)支持,返回NID_undef

EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure when passed an EVP_CIPHER_CTX structure.
###EVP_CIPHER_CTX_cipher() 传入EVP_CIPHER_CTX结构体,返回EVP_CIPHER结构体

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode: EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE,
###EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() 返回块加密模式:EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE,
EVP_CIPH_CFB_MODE or EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then EVP_CIPH_STREAM_CIPHER is returned.
###EVP_CIPH_CFB_MODE or EVP_CIPH_OFB_MODE,如果是流加密模式,返回EVP_CIPH_STREAM_CIPHER

EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based on the passed cipher. This will typically include
###EVP_CIPHER_param_to_asn1()基于传入加密算法设置算法标志参数                                        一般来说这将会包含
any parameters and an IV. The cipher IV (if any) must be set when this call is made. This call should be made before the cipher
###任意参数和一个初始化向量IV      如果有的话,IV必须在调用该函数前设置                  这个调用应该早于加密算法实际使用前,
is actually "used" (before any EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function may fail if the
###(比如EVP_EncryptUpdate(), EVP_DecryptUpdate() 之类的)        如果加密算法不支持任何ASN1,函数调用将会失败
cipher does not have any ASN1 support.

EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1 AlgorithmIdentifier "parameter". The precise effect
###EVP_CIPHER_asn1_to_param()基于ASN1描述的数据设置加密算法参数                                             这个精确的效果
depends on the cipher In the case of RC2, for example, it will set the IV and effective key length. This function should be
###依赖于RC2中的算法实例                    比如说,它将会设置IV和有效秘钥长度                 函数调用时机应该是基本加密算法
called after the base cipher type is set but before the key is set. For example EVP_CipherInit() will be called with the IV and
###类型被设定后、秘钥设置前                                            例如EVP_CipherInit()需要参数IV,秘钥为NULL
key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally EVP_CipherInit() again with all parameters except the
###          EVP_CIPHER_asn1_to_param() EVP_CipherInit() 在调用时候需要所有参数 ,除了key设为NULL
key set to NULL. It is possible for this function to fail if the cipher does not have any ASN1 support or the parameters cannot
###                   如果加密算法不支持ASN1,或者参数不能被设置(比如RC2有效密码长度不支持设置)将,函数调用将会fail
be set (for example the RC2 effective key length is not supported.

EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined and set.
###EVP_CIPHER_CTX_ctrl()允许获得和设置各种各样的加密算法指定的参数

RETURN VALUES

EVP_CIPHER_CTX_new() returns a pointer to a newly created EVP_CIPHER_CTX for success and NULL for failure.

EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex() return 1 for success and 0 for failure.

EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure. EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.

EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure. EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.

EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an EVP_CIPHER structure or NULL on error.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block size.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key length.

EVP_CIPHER_CTX_set_padding() always returns 1.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV length or zero if the cipher does not use an IV.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.

EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure.

EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater than zero for success and zero or a negative number.

CIPHER LISTING

All algorithms have a fixed key length unless otherwise stated.

EVP_enc_null()
Null cipher: does nothing.

EVP_aes_128_cbc(), EVP_aes_128_ecb(), EVP_aes_128_cfb(), EVP_aes_128_ofb()
AES with a 128-bit key in CBC, ECB, CFB and OFB modes respectively.

EVP_aes_192_cbc(), EVP_aes_192_ecb(), EVP_aes_192_cfb(), EVP_aes_192_ofb()
AES with a 192-bit key in CBC, ECB, CFB and OFB modes respectively.

EVP_aes_256_cbc(), EVP_aes_256_ecb(), EVP_aes_256_cfb(), EVP_aes_256_ofb()
AES with a 256-bit key in CBC, ECB, CFB and OFB modes respectively.

EVP_des_cbc(), EVP_des_ecb(), EVP_des_cfb(), EVP_des_ofb()
DES in CBC, ECB, CFB and OFB modes respectively.

EVP_des_ede_cbc(), EVP_des_ede(), EVP_des_ede_ofb(), EVP_des_ede_cfb()
Two key triple DES in CBC, ECB, CFB and OFB modes respectively.

EVP_des_ede3_cbc(), EVP_des_ede3(), EVP_des_ede3_ofb(), EVP_des_ede3_cfb()
Three key triple DES in CBC, ECB, CFB and OFB modes respectively.

EVP_desx_cbc()
DESX algorithm in CBC mode.

EVP_rc4()
RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.

EVP_rc4_40()
RC4 stream cipher with 40 bit key length. This is obsolete and new code should use EVP_rc4() and the EVP_CIPHER_CTX_set_key_length() function.

EVP_idea_cbc() EVP_idea_ecb(), EVP_idea_cfb(), EVP_idea_ofb()
IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.

EVP_rc2_cbc(), EVP_rc2_ecb(), EVP_rc2_cfb(), EVP_rc2_ofb()
RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher with an additional parameter called "effective key bits" or "effective key length". By default both are set to 128 bits.

EVP_rc2_40_cbc(), EVP_rc2_64_cbc()
RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits. These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and EVP_CIPHER_CTX_ctrl() to set the key length and effective key length.

EVP_bf_cbc(), EVP_bf_ecb(), EVP_bf_cfb(), EVP_bf_ofb()
Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher.

EVP_cast5_cbc(), EVP_cast5_ecb(), EVP_cast5_cfb(), EVP_cast5_ofb()
CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher.

EVP_rc5_32_12_16_cbc(), EVP_rc5_32_12_16_ecb(), EVP_rc5_32_12_16_cfb(), EVP_rc5_32_12_16_ofb()
RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher with an additional "number of rounds" parameter. By default the key length is set to 128 bits and 12 rounds.

EVP_aes_128_gcm(), EVP_aes_192_gcm(), EVP_aes_256_gcm()
AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively. These ciphers require additional control operations to function correctly: see the "GCM and OCB Modes" section below for details.

EVP_aes_128_ocb(void), EVP_aes_192_ocb(void), EVP_aes_256_ocb(void)
Offset Codebook Mode (OCB) for 128, 192 and 256 bit keys respectively. These ciphers require additional control operations to function correctly: see the "GCM and OCB Modes" section below for details.

EVP_aes_128_ccm(), EVP_aes_192_ccm(), EVP_aes_256_ccm()
AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys respectively. These ciphers require additional control operations to function correctly: see CCM mode section below for details.

EVP_chacha20()
The ChaCha20 stream cipher. The key length is 256 bits, the IV is 96 bits long.

EVP_chacha20_poly1305()
Authenticated encryption with ChaCha20-Poly1305. Like EVP_chacha20() the key is 256 bits and the IV is 96 bits. This supports additional authenticated data (AAD) and produces a 128 bit authentication tag. See the "GCM and OCB Modes" section for more information.

GCM and OCB Modes

For GCM and OCB mode ciphers the behaviour of the EVP interface is subtly altered and several additional ctrl operations are supported.

To specify any additional authenticated data (AAD) a call to EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output parameter out set to NULL.

When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFinal() indicates if the operation was successful. If it does not indicate success the authentication operation has failed and any output data MUST NOT be used as it is corrupted.

The following ctrls are supported in both GCM and OCB modes:

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
Sets the IV length: this call can only be made before specifying an IV. If not called a default IV length is used. For GCM AES and OCB AES the default is 12 (i.e. 96 bits). For OCB mode the maximum is 15.

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag);
Writes taglen bytes of the tag value to the buffer indicated by tag. This call can only be made when encrypting data and after all data has been processed (e.g. after an EVP_EncryptFinal() call). For OCB mode the taglen must either be 16 or the value previously set via EVP_CTRL_OCB_SET_TAGLEN.

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
Sets the expected tag to taglen bytes from tag. This call is only legal when decrypting data. For OCB mode the taglen must either be 16 or the value previously set via EVP_CTRL_AEAD_SET_TAG.

In OCB mode calling this with tag set to NULL sets the tag length. The tag length can only be set before specifying an IV. If not called a default tag length is used. For OCB AES the default is 16 (i.e. 128 bits). This is also the maximum tag length for OCB.

CCM Mode

The behaviour of CCM mode ciphers is similar to GCM mode but with a few additional requirements and different ctrl values.

Like GCM and OCB modes any additional authenticated data (AAD) is passed by calling EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output parameter out set to NULL. Additionally the total plaintext or ciphertext length MUST be passed to EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output and input parameters (in and out) set to NULL and the length passed in the inl parameter.

The following ctrls are supported in CCM mode:

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
This call is made to set the expected CCM tag value when decrypting or the length of the tag (with the tag parameter set to NULL) when encrypting. The tag length is often referred to as M. If not set a default value is used (12 for AES).

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL);
Sets the CCM L value. If not set a default is used (8 for AES).

 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
Sets the CCM nonce (IV) length: this call can only be made before specifying an nonce value. The nonce length is given by 15 - L so it is 7 by default for AES.

NOTES

Where possible the EVP interface to symmetric ciphers should be used in preference to the low level interfaces. This is because the code then becomes transparent to the cipher used and much more flexible. Additionally, the EVP interface will ensure the use of platform specific cryptographic acceleration such as AES-NI (the low level interfaces do not provide the guarantee).

PKCS padding works by adding n padding bytes of value n to make the total length of the encrypted data a multiple of the block size. Padding is always added so if the data is already a multiple of the block size n will equal the block size. For example if the block size is 8 and 11 bytes are to be encrypted then 5 padding bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled, it is not a strong test that the input data or key is correct. A random block has better than 1 in 256 chance of being of the correct format and problems with the input data earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if the total amount of data decrypted is a multiple of the block size.

The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for compatibility with existing code. New code should use EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an existing context without allocating and freeing it up on each call.

EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.

BUGS

For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is a limitation of the current RC5 code rather than the EVP interface.

EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with default key lengths. If custom ciphers exceed these values the results are unpredictable. This is because it has become standard practice to define a generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.

The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.

EXAMPLES

Encrypt a string using IDEA:

 int do_crypt(char *outfile)
 {
     unsigned char outbuf[1024];
     int outlen, tmplen;
     /*
      * Bogus key and IV: we'd normally set these from
      * another source.
      */
     unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
     unsigned char iv[] = {1,2,3,4,5,6,7,8};
     char intext[] = "Some Crypto Text";
     EVP_CIPHER_CTX *ctx;
     FILE *out;

     ctx = EVP_CIPHER_CTX_new();
     EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);

     if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext))) {
         /* Error */
         EVP_CIPHER_CTX_free(ctx);
         return 0;
     }
     /*
      * Buffer passed to EVP_EncryptFinal() must be after data just
      * encrypted to avoid overwriting it.
      */
     if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) {
         /* Error */
         EVP_CIPHER_CTX_free(ctx);
         return 0;
     }
     outlen += tmplen;
     EVP_CIPHER_CTX_free(ctx);
     /*
      * Need binary mode for fopen because encrypted data is
      * binary data. Also cannot use strlen() on it because
      * it won't be NUL terminated and may contain embedded
      * NULs.
      */
     out = fopen(outfile, "wb");
     if (out == NULL) {
         /* Error */
         return 0;
     }
     fwrite(outbuf, 1, outlen, out);
     fclose(out);
     return 1;
 }
The ciphertext from the above example can be decrypted using the openssl utility with the command line (shown on two lines for clarity):

 openssl idea -d \
     -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 <filename
General encryption and decryption function example using FILE I/O and AES128 with a 128-bit key:

 int do_crypt(FILE *in, FILE *out, int do_encrypt)
 {
     /* Allow enough space in output buffer for additional block */
     unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
     int inlen, outlen;
     EVP_CIPHER_CTX *ctx;
     /*
      * Bogus key and IV: we'd normally set these from
      * another source.
      */
     unsigned char key[] = "0123456789abcdeF";
     unsigned char iv[] = "1234567887654321";

     /* Don't set key or IV right away; we want to check lengths */
     ctx = EVP_CIPHER_CTX_new();
     EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
                       do_encrypt);
     OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
     OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);

     /* Now we can set key and IV */
     EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);

     for (;;) {
         inlen = fread(inbuf, 1, 1024, in);
         if (inlen <= 0)
             break;
         if (!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen)) {
             /* Error */
             EVP_CIPHER_CTX_free(ctx);
             return 0;
         }
         fwrite(outbuf, 1, outlen, out);
     }
     if (!EVP_CipherFinal_ex(ctx, outbuf, &outlen)) {
         /* Error */
         EVP_CIPHER_CTX_free(ctx);
         return 0;
     }
     fwrite(outbuf, 1, outlen, out);

     EVP_CIPHER_CTX_free(ctx);
     return 1;
 }
SEE ALSO

evp(7)

HISTORY

Support for OCB mode was added in OpenSSL 1.1.0

EVP_CIPHER_CTX was made opaque in OpenSSL 1.1.0. As a result, EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup() disappeared. EVP_CIPHER_CTX_init() remains as an alias for EVP_CIPHER_CTX_reset().

COPYRIGHT

Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or athttps://www.openssl.org/source/license.html.

You are here: Home : Docs : Manpages : master : man3 : EVP_EncryptInit
Sitemap
master manpages
Commands
Libraries
File Formats
Overviews
Please report problems with this website to webmaster at openssl.org.

Copyright © 1999-2016, OpenSSL Software Foundation.


原创粉丝点击