Unity性能优化

来源:互联网 发布:面粉 爆炸 威力 知乎 编辑:程序博客网 时间:2024/06/16 05:08

转载 http://www.taidous.com/blog-26815-200.html


一直一来都想发表一篇属于自己的文章,最近在整理unity相关的技术文档,于是针对目前项目的优化问题查阅了很久前找的资料,针对之前的资料做出新的整理,这里参考了部分大神总结的优化解决方案,但是由于之前都是复制的文本,因此也找不到连接了,在此深表感谢,别怪我盗贴啊,废话不多说,开始正题。

Unity性能优化

主要从三个方面进行说明:CPU、GPU、和内存。

一、CPU的方面的优化:

CPU优化方向:

1、DrawCalls

2、物理组件(Physics)

3、GC(GC为处理内存,此项为CPU使用GC处理内存时产生的性能损耗)

4、程序代码

 

Drawcalls:

Drawcall是啥?其实就是对底层图形程序(比如:OpenGL ES)接口的调用,以在屏幕上画出东西。

如何优化:

1)使用Draw Call Batching,也就是描绘调用批处理。Unity在运行时可以将一些物体进行合并,从而用一个描绘调用来渲染他们。

静态批处理Static Batching,只要是静态不动的物体且具有相同材质的话就可以使用静态批处理来降低描绘调用(注:shader不同则会增加纹理的拼合降低渲染效率)

动态批处理Dynamic Batching:动态批处理是引擎自动进行,无需设置,当物体共享相同的材质,则引擎就会自动对Drawcall进行优化,也就是动态批处理(如实例化预制件)。动态批处理存在约束,稍有不慎就会增加Drawcall

动态批处理的约束:

1、批处理动态物体需要在每个顶点上进行一定的开销,所以动态批处理仅支持小于900顶点的网格物体。

2、如果你的着色器使用顶点位置,法线和UV值三种属性,那么你只能批处理300顶点以下的物体;如果你的着色器需要使用顶点位置,法线,UV0,UV1和切向量,那你只能批处理180顶点以下的物体。

3、不要使用缩放。分别拥有缩放大小(1,1,1) 和(2,2,2)的两个物体将不会进行批处理。

4、统一缩放的物体不会与非统一缩放的物体进行批处理。

5、使用缩放尺度(1,1,1) 和 (1,2,1)的两个物体将不会进行批处理,但是使用缩放尺度(1,2,1) 和(1,3,1)的两个物体将可以进行批处理。

6、使用不同材质的实例化物体(instance)将会导致批处理失败。

7、拥有lightmap的物体含有额外(隐藏)的材质属性,比如:lightmap的偏移和缩放系数等。所以,拥有lightmap的物体将不会进行批处理(除非他们指向lightmap的同一部分)。

8、多通道的shader会妨碍批处理操作。比如,几乎unity中所有的着色器在前向渲染中都支持多个光源,并为它们有效地开辟多个通道。

9、预设体的实例会自动地使用相同的网格模型和材质。

所以尽量使用静态批处理。

2)NGUI和UGUI需将同一界面的UI元素打包图集。

 

物理组件:

1)设置Fixed timestep,减少物理计算次数,提高游戏性能。

2)减少FPS,在ProjectSetting-> Quality中的VSync Count 参数会影响你的FPS,EveryVBlank相当于FPS=60,EverySecondVBlank = 30;这两种情况都不符合游戏的FPS的话,我们需要手动调整FPS,首先关闭垂直同步这个功能,然后在代码的Awake方法里手动设置FPS(Application.targetFrameRate = 45;)
降低FPS的好处:
1.省电,减少手机发热的情况;
2.能都稳定游戏FPS,减少出现卡顿的情况。

关于垂直同步:

什么是垂直同步,简单来说就是显示器上的所有图像都是一线一线扫描上去的,显示器都有两种同步参数,水平和垂直同步,水平同步信号决定画出一条屏幕横线的时间,垂直决定从屏幕顶部画一条线到底部,再返回原位置的时间,垂直同步决定了显示器的刷新水平,如果选择了等待同步信号,但是比较强的显卡会迅速绘制完一屏的图像,但是没有垂直同步信号的到达,显示器无法绘制下一屏,所以操作系统刷新率会制约FPS,如果选择不等待,即关闭垂直同步,那就会提升性能,发挥显卡的最大性能,但是有个弊端,就是正是因为垂直同步的存在才使得游戏进程和显示器刷新率同步,使得画面变得更加平滑和稳定。因此是否关闭垂直同步提升帧数需要酌情考虑。

3)尽量不用MeshCollider

如果可以的话,尽量不用MeshCollider,以节省不必要的开销。如果不能避免的话,尽量用减少Mesh的面片数,或用较少面片的代理体来代替。

4)粒子组件,屏幕上最大粒子数量建议小于200个,粒子应尽可能的小,关闭粒子的碰撞功能。

 

GC:

虽然GC是用来处理内存的,但是却会增加CPU的开销,首先我们要明确所谓的GC是Mono运行时的机制,而非Unity3D游戏引擎的机制,所以GC也主要是针对Mono的对象来说的,而它管理的也是Mono的托管堆。 搞清楚这一点,你也就明白了GC不是用来处理引擎的assets(纹理啦,音效啦等等)的内存释放的,因为U3D引擎也有自己的内存堆而不是和Mono一起使用所谓的托管堆。其次我们要搞清楚什么东西会被分配到托管堆上?不错咯,就是引用类型咯。比如类的实例,字符串,数组等等。而作为int,float,包括结构体struct其实都是值类型,它们会被分配在堆栈上而非堆上。所以我们关注的对象无外乎就是类实例,字符串,数组这些了。所以GC的优化说白了也就是代码的优化。

此部分的代码优化只针对是否会触发GC:

1)字符串处理。如频繁操作单个字符串使用StringBuilder

2)尽量不要使用foreach,而是使用for。foreach其实会涉及到迭代器的使用,而据传说每一次循环所产生的迭代器会带来24 Bytes的垃圾。那么循环10次就是240Bytes。

3)不要直接访问gameobject的tag属性。比如if (go.tag == “human”)最好换成if (go.CompareTag (“human”))。因为访问物体的tag属性会在堆上额外的分配空间。如果在循环中这么处理,留下的垃圾就可想而知了。

4)使用“池”,以实现空间的重复利用。

5)最好不用LINQ的命令,因为它们会分配临时的空间,同样也是GC收集的目标。

 

代码:

1)不要频繁使用GetComponent去频繁获取组件,如使用可在Awake函数中持有引用。

2)善于使用OnBecameVisible()和OnBecameVisible()来控制物体的Update()函数的执行以减少开销。

3)使用内建数组如使用Vector3.zero而不是new Vector(0,0,0);

4)数组、集合类元素优先使用Array,其次是List;

5)脚本在不使用时脚本禁用之,需要时再启用;

6)可以使用Ray来代替OnMouseXXX类方法

7)尽量少用模运算和除法运算,比如a/5f,一定要写成a*0.2f

8)不要使用原生的GUI方法

 

二、GPU的优化:

GPU优化方向:

1.填充率,可以简单的理解为图形处理单元每秒渲染的像素数量。

2.像素的复杂度,比如动态阴影,光照,复杂的shader等等

3.几何体的复杂度(顶点数量)

4.当然还有GPU的显存带宽

针对以上4点,可以发现影响GPU性能的无非就是两个方面,一是定点过多,即模型复杂面数多,另一个就是GPU的显存带宽。

 

减少绘制数目:

1)保持材质的数目尽可能少。这使得Unity更容易进行批处理。

2)使用纹理图集(一张大贴图里包含了很多子贴图)来代替一系列单独的小贴图。它们可以更快地被加载,具有很少的状态转换,而且批处理更友好。

3)如果使用了纹理图集和共享材质,使用Renderer.sharedMaterial 来代替Renderer.material 。

4)使用光照纹理(lightmap)而非实时灯光。

5)使用LOD,好处就是对那些离得远,看不清的物体的细节可以忽略。

6)遮挡剔除(Occlusion culling)

优化显存带宽:

1)压缩图片,减小显存带宽的压力。

2)使用mipmap。

Mipmap中每一个层级的小图都是主图的一个特定比例的缩小细节的复制品。因为存了主图和它的那些缩小的复制品,所以内存占用会比之前大。但是为何又优化了显存带宽呢?因为可以根据实际情况,选择适合的小图来渲染。所以,虽然会消耗一些内存,但是为了图片渲染的质量(比压缩要好),这种方式也是推荐的。

 

三、内存的优化:

Unity中的内存种类

实际上Unity游戏使用的内存一共有三种:程序代码、托管堆(Managed Heap)以及本机堆(Native Heap)。

程序代码包括了所有的Unity引擎,使用的库,以及你所写的所有的游戏代码。在编译后,得到的运行文件将会被加载到设备中执行,并占用一定内存。这部分内存实际上是没有办法去“管理”的,它们将在内存中从一开始到最后一直存在。一个空的Unity默认场景,什么代码都不放,在iOS设备上占 用内存应该在17MB左右,而加上一些自己的代码很容易就飙到20MB左右。想要减少这部分内存的使用,能做的就是减少使用的库,稍后再说。

托管堆是被Mono使用的一部分内存。Mono项目一个开源的.net框架的一种实现,对于Unity开发,其实充当了基本类库的角色。托管堆用来存放类的实例(比如用new生成的列表,实例中的各种声明的变量等)。“托管”的意思是Mono“应该”自动地改变堆的大小来适应你所需要的内存,并且定时地使用垃圾回收(GC)来释放已经不需要的内存。关键在于,有时候你会忘记清除对已经不需要再使用的内存的引用,从而导致Mono认为这块内存一直有用,而无法回收。

本机堆是Unity引擎进行申请和操作的地方,比如贴图,音效,关卡数据等。Unity使用了自己的一套内存管理机制来使这块内存具有和托管堆类似的功能。基本理念是,如果在这个关卡里需要某个资源,那么在需要时就加载,之后在没有任何引用时进行卸载。听起来很美好也和托管堆一样,但是由于Unity有一套自动加载和卸载资源的机制,让两者变得差别很大。自动加载资源可以为开发者省不少事儿,但是同时也意味着开发者失去了手动管理所有加载资源的权力,这非常容易导致大量的内存占用(贴图什么的你懂的),也是Unity给人留下“吃内存”印象的罪魁祸首。

 

优化程序代码的内存占用

这部分的优化相对简单,因为能做的事情并不多:主要就是减少打包时的引用库,改一改build设置即可。

对于一个新项目来说不会有太大问题,但是如果是已经存在的项目,可能改变会导致原来所需要的库的缺失(虽说一般来说这种可能性不大),因此有可能无法做到最优。

当使用Unity开发时,默认的Mono包含库可以说大部分用不上,在Player Setting(Edit->Project Setting->Player或者Shift+Ctrl(Command)+B里的Player Setting按钮)面板里,将最下方的Optimization栏目中“Api Compatibility Level”选为.NET 2.0 Subset,表示你只会使用到部分的.NET 2.0 Subset,不需要Unity将全部.NET的Api包含进去。接下来的“Stripping Level”表示从build的库中剥离的力度,每一个剥离选项都将从打包好的库中去掉一部分内容。你需要保证你的代码没有用到这部分被剥离的功能,选为“Use micro mscorlib”的话将使用最小的库(一般来说也没啥问题,不行的话可以试试之前的两个)。库剥离可以极大地降低打包后的程序的尺寸以及程序代码的内存占用,唯一的缺点是这个功能只支持Pro版的Unity。

这部分优化的力度需要根据代码所用到的.NET的功能来进行调整,有可能不能使用Subset或者最大的剥离力度。如果超出了限度,很可能会在需要该功能时因为找不到相应的库而crash掉(iOS的话很可能在Xcode编译时就报错了)。比较好地解决方案是仍然用最强的剥离,并辅以较小的第三方的类库来完成所需功能。一个最常见问题是最大剥离时Sysytem.Xml是不被Subset和micro支持的,如果只是为了xml,完全可以导入一个轻量级的xml库来解决依赖(Unity官方推荐这个)。

关于每个设定对应支持的库的详细列表,可以在这里找到。关于每个剥离级别到底做了什么,Unity的文档也有说明。

实际上,在游戏开发中绝大多数被剥离的功能使用不上的,因此不管如何,库剥离的优化方法都值得一试。

 

托管堆优化

首先需要明确,托管堆中存储的是你在你的代码中申请的内存(不论是用js,还是C#写的)。一般来说,无非是new或者Instantiate两种生成object的方法(事实上Instantiate中也是调用了new)。在接收到请求后,托管堆在其上为要新生成的对象实例以及其实例变量分配内存,如果可用空间不足,则向系统申请更多空间。

当你使用完一个实例对象之后,通常来说在脚本中就不会再有对该对象的引用了(这包括将变量设置为null或其他引用,超出了变量的作用域,或者对Unity对象发送Destory())。在每隔一段时间,Mono的垃圾回收机制将检测内存,将没有再被引用的内存释放回收。总的来说,你要做的就是在尽可能早的时间将不需要的引用去除掉,这样回收机制才能正确地把不需要的内存清理出来。但是需要注意在内存清理时有可能造成游戏的短时间卡顿,这将会很影响游戏体验,因此如果有大量的内存回收工作要进行的话,需要尽量选择合适的时间。

如果在你的游戏里,有特别多的类似实例,并需要对它们经常发送Destroy()的话,游戏性能上会相当难看。比如小熊推金币中的金币实例,按理说每枚金币落下台子后都需要对其Destory(),然后新的金币进入台子时又需要Instantiate,这对性能是极大的浪费。一种通常的做法是在不需要时,不摧毁这个GameObject,而只是隐藏它,并将其放入一个重用数组中。之后需要时,再从重用数组中找到可用的实例并显示。这将极大地改善游戏的性能,相应的代价是消耗部分内存,一般来说这是可以接受的。

如果不是必要,应该在游戏进行的过程中尽量减少对GameObject的Instantiate()和Destroy()调用,因为对计算资源会有很大消耗。在便携设备上短时间大量生成和摧毁物体的话,很容易造成瞬时卡顿。如果内存没有问题的话,尽量选择先将他们收集起来,然后在合适的时候(比如按暂停键或者是关卡切换),将它们批量地销毁并 且回收内存。Mono的内存回收会在后台自动进行,系统会选择合适的时间进行垃圾回收。在合适的时候,也可以手动地调用 System.GC.Collect()来建议系统进行一次垃圾回收。

要注意的是这里的调用真的仅仅只是建议,可能系统会在一段时间后在进行回收,也可能完全不理会这条请求,不过在大部分时间里,这个调用还是靠谱的。

 

本机堆的优化

当你加载完成一个Unity的scene的时候,scene中的所有用到的asset(包括Hierarchy中所有GameObject上以及脚本中赋值了的的材质,贴图,动画,声音等素材),都会被自动加载(这正是Unity的智能之处)。也就是说,当关卡呈现在用户面前的时候,所有Unity编辑器能认识的本关卡的资源都已经被预先加 入内存了,这样在本关卡中,用户将有良好的体验,不论是更换贴图,声音,还是播放动画时,都不会有额外的加载,这样的代价是内存占用将变多。Unity最 初的设计目的还是面向台式机,几乎无限的内存和虚拟内存使得这样的占用似乎不是问题,但是这样的内存策略在之后移动平台的兴起和大量移动设备游戏的制作中出现了弊端,因为移动设 备能使用的资源始终非常有限。因此在面向移动设备游戏的制作时,尽量减少在Hierarchy对资源的直接引用,而是使用Resource.Load的方 法,在需要的时候从硬盘中读取资源,在使用后用Resource.UnloadAsset()和Resources.UnloadUnusedAssets()尽快将其卸载掉。总之,这里是一个处理时间和占用内存空间的trade off,如何达到最好的效果没有标准答案,需要自己权衡。

在关卡结束的时候,这个关卡中所使用的所有资源将会被卸载掉(除非被标记了DontDestroyOnLoad)的资源。注意不仅是DontDestroyOnLoad的资源本身,其相关的所有资源在关卡切换时都不会被卸载。DontDestroyOnLoad一般被用来在关卡之间保存一些玩家的状态,比如分数,级别等偏向文 本的信息。如果DontDestroyOnLoad了一个包含很多资源(比如大量贴图或者声音等大内存占用的东西)的话,这部分资源在场景切换时无法卸 载,将一直占用内存,这种情况应该尽量避免。

另外一种需要注意的情况是脚本中对资源的引用。大部分脚本将在场景转换时随之失效并被回收,但是,在场景之间被保持的脚本不在此列(通常情况是被附 着在DontDestroyOnLoad的GameObject上了)。而这些脚本很可能含有对其他物体的Component或者资源的引用,这样相关的 资源就都得不到释放,这绝对是不想要的情况。另外,static的单例(singleton)在场景切换时也不会被摧毁,同样地,如果这种单例含有大量的对资源的引用,也会成为大问题。

因此,尽量减少代码的耦合和对其他脚本的依赖是十分有必要的。如果确实无法避免这种情况,那应当手动地对这些不再使用的引用对象调用Destroy()或者将其设置为null。这样在垃圾回收的时候,这些内存将被认为已经无用而被回收。

需要注意的是,Unity在一个场景开始时,根据场景构成和引用关系所自动读取的资源,只有在读取一个新的场景或者reset当前场景时,才会得到清理。

因此这部分内存占用是不可避免的。在小内存环境中,这部分初始内存的占用十分重要,因为它决定了你的关卡是否能够被正常加载。因此在计算资源充足或是关卡开始之后还有机会进行加载时,尽量减少Hierarchy中的引用,变为手动用Resource.Load,将大大减少内存占用。在 Resource.UnloadAsset()和Resources.UnloadUnusedAssets()时,只有那些真正没有任何引用指向的资源 会被回收,因此请确保在资源不再使用时,将所有对该资源的引用设置为null或者Destroy。

同样需要注意,这两个Unload方法仅仅对Resource.Load拿到的资源有效,而不能回收任何场景开始时自动加载的资源。与此类似的还有 AssetBundle的Load和Unload方法,灵活使用这些手动自愿加载和卸载的方法,是优化Unity内存占用的不二法则~

原创粉丝点击