Coursera-Deep Learning Specialization 课程之(二):Improving Deep Neural Networks: -weak2编程作业

来源:互联网 发布:sql联合主键 编辑:程序博客网 时间:2024/05/29 12:47

Optimization Methods

这里写图片描述

1 - Gradient Descent

def update_parameters_with_gd(parameters, grads, learning_rate):    """    Update parameters using one step of gradient descent    Arguments:    parameters -- python dictionary containing your parameters to be updated:                    parameters['W' + str(l)] = Wl                    parameters['b' + str(l)] = bl    grads -- python dictionary containing your gradients to update each parameters:                    grads['dW' + str(l)] = dWl                    grads['db' + str(l)] = dbl    learning_rate -- the learning rate, scalar.    Returns:    parameters -- python dictionary containing your updated parameters     """    L = len(parameters) // 2 # number of layers in the neural networks    # Update rule for each parameter    for l in range(L):        ### START CODE HERE ### (approx. 2 lines)        parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*grads['dW' + str(l+1)]        parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*grads['db' + str(l+1)]        ### END CODE HERE ###    return parameters

这里写图片描述

2 - Mini-Batch Gradient descent

# GRADED FUNCTION: random_mini_batchesdef random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):    """    Creates a list of random minibatches from (X, Y)    Arguments:    X -- input data, of shape (input size, number of examples)    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)    mini_batch_size -- size of the mini-batches, integer    Returns:    mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)    """    np.random.seed(seed)            # To make your "random" minibatches the same as ours    m = X.shape[1]                  # number of training examples    mini_batches = []    # Step 1: Shuffle (X, Y)    permutation = list(np.random.permutation(m))    shuffled_X = X[:, permutation]    shuffled_Y = Y[:, permutation].reshape((1,m))    # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.    num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning    for k in range(0, num_complete_minibatches):        ### START CODE HERE ### (approx. 2 lines)        mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1)*mini_batch_size]        mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1)*mini_batch_size]        ### END CODE HERE ###        mini_batch = (mini_batch_X, mini_batch_Y)        mini_batches.append(mini_batch)    # Handling the end case (last mini-batch < mini_batch_size)    if m % mini_batch_size != 0:        ### START CODE HERE ### (approx. 2 lines)        mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1)*mini_batch_size]        mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1)*mini_batch_size]        ### END CODE HERE ###        mini_batch = (mini_batch_X, mini_batch_Y)        mini_batches.append(mini_batch)    return mini_batches

3 - Momentum

# GRADED FUNCTION: initialize_velocitydef initialize_velocity(parameters):    """    Initializes the velocity as a python dictionary with:                - keys: "dW1", "db1", ..., "dWL", "dbL"                 - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.    Arguments:    parameters -- python dictionary containing your parameters.                    parameters['W' + str(l)] = Wl                    parameters['b' + str(l)] = bl    Returns:    v -- python dictionary containing the current velocity.                    v['dW' + str(l)] = velocity of dWl                    v['db' + str(l)] = velocity of dbl    """    L = len(parameters) // 2 # number of layers in the neural networks    v = {}    # Initialize velocity    for l in range(L):        ### START CODE HERE ### (approx. 2 lines)        v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape[0],parameters["W" + str(l+1)].shape[1]))        v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape[0],parameters["b" + str(l+1)].shape[1]))        ### END CODE HERE ###    return v
# GRADED FUNCTION: update_parameters_with_momentumdef update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):    """    Update parameters using Momentum    Arguments:    parameters -- python dictionary containing your parameters:                    parameters['W' + str(l)] = Wl                    parameters['b' + str(l)] = bl    grads -- python dictionary containing your gradients for each parameters:                    grads['dW' + str(l)] = dWl                    grads['db' + str(l)] = dbl    v -- python dictionary containing the current velocity:                    v['dW' + str(l)] = ...                    v['db' + str(l)] = ...    beta -- the momentum hyperparameter, scalar    learning_rate -- the learning rate, scalar    Returns:    parameters -- python dictionary containing your updated parameters     v -- python dictionary containing your updated velocities    """    L = len(parameters) // 2 # number of layers in the neural networks    # Momentum update for each parameter    for l in range(L):        ### START CODE HERE ### (approx. 4 lines)        # compute velocities        v["dW" + str(l+1)] = beta*v["dW" + str(l+1)]+(1-beta)*grads['dW' + str(l+1)]        v["db" + str(l+1)] = beta*v["db" + str(l+1)]+(1-beta)*grads['db' + str(l+1)]        # update parameters        parameters["W" + str(l+1)] =parameters["W" + str(l+1)]- learning_rate*v["dW" + str(l+1)]        parameters["b" + str(l+1)] = parameters["b" + str(l+1)]- learning_rate*v["db" + str(l+1)]        ### END CODE HERE ###    return parameters, v

4 - Adam

# GRADED FUNCTION: initialize_adamdef initialize_adam(parameters) :    """    Initializes v and s as two python dictionaries with:                - keys: "dW1", "db1", ..., "dWL", "dbL"                 - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.    Arguments:    parameters -- python dictionary containing your parameters.                    parameters["W" + str(l)] = Wl                    parameters["b" + str(l)] = bl    Returns:     v -- python dictionary that will contain the exponentially weighted average of the gradient.                    v["dW" + str(l)] = ...                    v["db" + str(l)] = ...    s -- python dictionary that will contain the exponentially weighted average of the squared gradient.                    s["dW" + str(l)] = ...                    s["db" + str(l)] = ...    """    L = len(parameters) // 2 # number of layers in the neural networks    v = {}    s = {}    # Initialize v, s. Input: "parameters". Outputs: "v, s".    for l in range(L):    ### START CODE HERE ### (approx. 4 lines)        v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape[0],parameters["W" + str(l+1)].shape[1]))        v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape[0],parameters["b" + str(l+1)].shape[1]))        s["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape[0],parameters["W" + str(l+1)].shape[1]))        s["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape[0],parameters["b" + str(l+1)].shape[1]))    ### END CODE HERE ###    return v, s
# GRADED FUNCTION: update_parameters_with_adamdef update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,                                beta1 = 0.9, beta2 = 0.999,  epsilon = 1e-8):    """    Update parameters using Adam    Arguments:    parameters -- python dictionary containing your parameters:                    parameters['W' + str(l)] = Wl                    parameters['b' + str(l)] = bl    grads -- python dictionary containing your gradients for each parameters:                    grads['dW' + str(l)] = dWl                    grads['db' + str(l)] = dbl    v -- Adam variable, moving average of the first gradient, python dictionary    s -- Adam variable, moving average of the squared gradient, python dictionary    learning_rate -- the learning rate, scalar.    beta1 -- Exponential decay hyperparameter for the first moment estimates     beta2 -- Exponential decay hyperparameter for the second moment estimates     epsilon -- hyperparameter preventing division by zero in Adam updates    Returns:    parameters -- python dictionary containing your updated parameters     v -- Adam variable, moving average of the first gradient, python dictionary    s -- Adam variable, moving average of the squared gradient, python dictionary    """    L = len(parameters) // 2                 # number of layers in the neural networks    v_corrected = {}                         # Initializing first moment estimate, python dictionary    s_corrected = {}                         # Initializing second moment estimate, python dictionary    # Perform Adam update on all parameters    for l in range(L):        # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".        ### START CODE HERE ### (approx. 2 lines)        v["dW" + str(l+1)] = beta1*v["dW" + str(l+1)]+(1-beta1)*grads["dW"+str(l+1)]        v["db" + str(l+1)] = beta1*v["dW" + str(l+1)]+(1-beta1)*grads["dW"+str(l+1)]        ### END CODE HERE ###        # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".        ### START CODE HERE ### (approx. 2 lines)        v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)]/(1-(beta1)**t)        v_corrected["db" + str(l+1)] = v["db" + str(l+1)]/(1-(beta1)**t)        ### END CODE HERE ###        # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".        ### START CODE HERE ### (approx. 2 lines)        s["dW" + str(l+1)] = beta2*s["dW" + str(l+1)]+(1-beta2)*grads["dW"+str(l+1)]**2        s["db" + str(l+1)] = beta2*s["db" + str(l+1)]+(1-beta2)*grads["db"+str(l+1)]**2        ### END CODE HERE ###        # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".        ### START CODE HERE ### (approx. 2 lines)        s_corrected["dW" + str(l+1)] = (s["dW" + str(l+1)])/(1-beta2**t)        s_corrected["db" + str(l+1)] = (s["db" + str(l+1)])/(1-beta2**t)        ### END CODE HERE ###        # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".        ### START CODE HERE ### (approx. 2 lines)        parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*v_corrected["dW" + str(l+1)]/(np.sqrt(s_corrected["dW" + str(l+1)])+epsilon)        parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*v_corrected["db" + str(l+1)]/(np.sqrt(s_corrected["db" + str(l+1)])+epsilon)        ### END CODE HERE ###    return parameters, v, s

5 - Model with different optimization algorithms

这里写图片描述

def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9,          beta1 = 0.9, beta2 = 0.999,  epsilon = 1e-8, num_epochs = 10000, print_cost = True):    """    3-layer neural network model which can be run in different optimizer modes.    Arguments:    X -- input data, of shape (2, number of examples)    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)    layers_dims -- python list, containing the size of each layer    learning_rate -- the learning rate, scalar.    mini_batch_size -- the size of a mini batch    beta -- Momentum hyperparameter    beta1 -- Exponential decay hyperparameter for the past gradients estimates     beta2 -- Exponential decay hyperparameter for the past squared gradients estimates     epsilon -- hyperparameter preventing division by zero in Adam updates    num_epochs -- number of epochs    print_cost -- True to print the cost every 1000 epochs    Returns:    parameters -- python dictionary containing your updated parameters     """    L = len(layers_dims)             # number of layers in the neural networks    costs = []                       # to keep track of the cost    t = 0                            # initializing the counter required for Adam update    seed = 10                        # For grading purposes, so that your "random" minibatches are the same as ours    # Initialize parameters    parameters = initialize_parameters(layers_dims)    # Initialize the optimizer    if optimizer == "gd":        pass # no initialization required for gradient descent    elif optimizer == "momentum":        v = initialize_velocity(parameters)    elif optimizer == "adam":        v, s = initialize_adam(parameters)    # Optimization loop    for i in range(num_epochs):        # Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch        seed = seed + 1        minibatches = random_mini_batches(X, Y, mini_batch_size, seed)        for minibatch in minibatches:            # Select a minibatch            (minibatch_X, minibatch_Y) = minibatch            # Forward propagation            a3, caches = forward_propagation(minibatch_X, parameters)            # Compute cost            cost = compute_cost(a3, minibatch_Y)            # Backward propagation            grads = backward_propagation(minibatch_X, minibatch_Y, caches)            # Update parameters            if optimizer == "gd":                parameters = update_parameters_with_gd(parameters, grads, learning_rate)            elif optimizer == "momentum":                parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)            elif optimizer == "adam":                t = t + 1 # Adam counter                parameters, v, s = update_parameters_with_adam(parameters, grads, v, s,                                                               t, learning_rate, beta1, beta2,  epsilon)        # Print the cost every 1000 epoch        if print_cost and i % 1000 == 0:            print ("Cost after epoch %i: %f" %(i, cost))        if print_cost and i % 100 == 0:            costs.append(cost)    # plot the cost    plt.plot(costs)    plt.ylabel('cost')    plt.xlabel('epochs (per 100)')    plt.title("Learning rate = " + str(learning_rate))    plt.show()    return parameters

5.1 - Mini-batch Gradient descent

这里写图片描述
这里写图片描述

5.2 - Mini-batch gradient descent with momentum

5.3 - Mini-batch with Adam mode

# train 3-layer modellayers_dims = [train_X.shape[0], 5, 2, 1]parameters = model(train_X, train_Y, layers_dims, optimizer = "adam")# Predictpredictions = predict(train_X, train_Y, parameters)# Plot decision boundaryplt.title("Model with Adam optimization")axes = plt.gca()axes.set_xlim([-1.5,2.5])axes.set_ylim([-1,1.5])plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
阅读全文
0 0