SVD 奇异值分解( The singular value decomposition )

来源:互联网 发布:淘宝带图评价福利 编辑:程序博客网 时间:2024/04/30 15:42

几何层面上去理解二维的SVD

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把 这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。

原文:We recommend a singular value decomposition

关于线性变换部分的一些知识可以猛戳这里  奇异值分解(SVD) --- 线性变换几何意义

奇异值分解( The singular value decomposition )

该部分是从几何层面上去理解二维的SVD:对于任意的 2 x 2 矩阵,通过SVD可以将一个相互垂直的网格(orthogonal grid)变换到另外一个相互垂直的网格。

我们可以通过向量的方式来描述这个事实: 首先,选择两个相互正交的单位向量 v和 v2, 向量Mv1 和 Mv2 正交。

u1 和 u2分别表示Mv1 和 Mv2的单位向量,σ1 * u1 =  Mv1 和 σ2 * u2 =  Mv2σ1 和 σ2分别表示这不同方向向量上的模,也称作为矩阵 M 的奇异值。

这样我们就有了如下关系式

Mv1 = σ1u1 
Mv2 = σ2u2

我们现在可以简单描述下经过 M 线性变换后的向量 的表达形式。由于向量v1 和 v2是正交的单位向量,我们可以得到如下式子:

x = (v1xv1 + (v2xv2

这就意味着:

Mx = (v1xMv1 + (v2xMv2 
Mx = (v1x) σ1u1 + (v2x) σ2u2

向量内积可以用向量的转置来表示,如下所示

vx = vTx

最终的式子为

Mx = u1σ1 v1Tx + u2σ2 v2Tx 
M = u1σ1 v1T + u2σ2 v2T

上述的式子经常表示成

M = UΣVT

矩阵的列向量分别是u1,uΣ 是一个对角矩阵,对角元素分别是对应的σ1 和 σ2矩阵的列向量分别是v1,v2。上角标 T 表示矩阵 的转置。

   这就表明任意的矩阵 M 是可以分解成三个矩阵。表示了原始域的标准正交基,表示经过 变换后的co-domain的标准正交基,Σ 表示了中的向量与中 相对应向量之间的关系。(V describes an orthonormal basis in the domain, and U describes an orthonormal basis in the co-domain, and Σ describes how much the vectors in V are stretched to give the vectors in U.)

如何获得奇异值分解?( How do we find the singular decomposition? )

   事实上我们可以找到任何矩阵的奇异值分解,那么我们是如何做到的呢?假设在原始域中有一个单位圆,如下图所示。经过 矩阵变换以后在co-domain中单位圆会变成一个椭圆,它的长轴(Mv1)和短轴(Mv2)分别对应转换后的两个标准正交向量,也是在椭圆范围内最长和最短的两个向量。

换句话说,定义在单位圆上的函数|Mx|分别在v1v2方向上取得最大和最小值。这样我们就把寻找矩阵的奇异值分解过程缩小到了优化函数|Mx|上了。结果发现(具体的推到过程这里就不详细介绍了)这个函数取得最优值的向量分别是矩阵 MT M 的特征向量。由于MTM是对称矩阵,因此不同特征值对应的特征向量都是互相正交的,我们用vi 表示MTM的所有特征向量。奇异值σi = |Mvi| , 向量 u为 Mvi 方向上的单位向量。但为什么ui也是正交的呢?

推倒如下:

σi 和 σj分别是不同两个奇异值

Mvi = σiui 
Mvj = σjuj.

我们先看下MviMvj,并假设它们分别对应的奇异值都不为零。一方面这个表达的值为0,推到如下

Mvi Mvj = viTMT Mvj = vi MTMvj = λjvi vj = 0

另一方面,我们有

Mvi Mvj = σiσj ui uj = 0

因此,ui 和 uj是正交的。但实际上,这并非是求解奇异值的方法,效率会非常低。这里也主要不是讨论如何求解奇异值,为了演示方便,采用的都是二阶矩阵。

应用实例(Another example)

现在我们来看几个实例。

实例一

经过这个矩阵变换后的效果如下图所示

在这个例子中,第二个奇异值为 0,因此经过变换后只有一个方向上有表达。

M = u1σ1 v1T.

换句话说,如果某些奇异值非常小的话,其相对应的几项就可以不同出现在矩阵 M 的分解式中。因此,我们可以看到矩阵 M 的秩的大小等于非零奇异值的个数。

实例二

我们来看一个奇异值分解在数据表达上的应用。假设我们有如下的一张 15 x 25 的图像数据。

如图所示,该图像主要由下面三部分构成。

我们将图像表示成 15 x 25 的矩阵,矩阵的元素对应着图像的不同像素,如果像素是白色的话,就取 1,黑色的就取 0. 我们得到了一个具有375个元素的矩阵,如下图所示

如果我们对矩阵M进行奇异值分解以后,得到奇异值分别是

σ1 = 14.72 
σ2 = 5.22 
σ3 = 3.31

矩阵M就可以表示成

M=u1σ1 v1T + u2σ2 v2T + u3σ3 v3T

vi具有15个元素,ui 具有25个元素,σi 对应不同的奇异值。如上图所示,我们就可以用123个元素来表示具有375个元素的图像数据了。

实例三

减噪(noise reduction)

前面的例子的奇异值都不为零,或者都还算比较大,下面我们来探索一下拥有零或者非常小的奇异值的情况。通常来讲,大的奇异值对应的部分会包含更多的信息。比如,我们有一张扫描的,带有噪声的图像,如下图所示

我们采用跟实例二相同的处理方式处理该扫描图像。得到图像矩阵的奇异值:

σ1 = 14.15 
σ2 = 4.67 
σ3 = 3.00 
σ4 = 0.21 
σ5 = 0.19 
... 
σ15 = 0.05

很明显,前面三个奇异值远远比后面的奇异值要大,这样矩阵 M 的分解方式就可以如下:

M  u1σ1 v1T + u2σ2 v2T + u3σ3 v3T

经过奇异值分解后,我们得到了一张降噪后的图像。

实例四

数据分析(data analysis)

我们搜集的数据中总是存在噪声:无论采用的设备多精密,方法有多好,总是会存在一些误差的。如果你们还记得上文提到的,大的奇异值对应了矩阵中的主要信息的话,运用SVD进行数据分析,提取其中的主要部分的话,还是相当合理的。

作为例子,假如我们搜集的数据如下所示:

我们将数据用矩阵的形式表示:

经过奇异值分解后,得到

σ1 = 6.04 
σ2 = 0.22

由于第一个奇异值远比第二个要大,数据中有包含一些噪声,第二个奇异值在原始矩阵分解相对应的部分可以忽略。经过SVD分解后,保留了主要样本点如图所示

就保留主要样本数据来看,该过程跟PCA( principal component analysis)技术有一些联系,PCA也使用了SVD去检测数据间依赖和冗余信息.

总结(Summary)

   这篇文章非常的清晰的讲解了SVD的几何意义,不仅从数学的角度,还联系了几个应用实例形象的论述了SVD是如何发现数据中主要信息的。在 netflix prize中许多团队都运用了矩阵分解的技术,该技术就来源于SVD的分解思想,矩阵分解算是SVD的变形,但思想还是一致的。之前算是能够运用矩阵分解 技术于个性化推荐系统中,但理解起来不够直观,阅读原文后醍醐灌顶,我想就从SVD能够发现数据中的主要信息的思路,就几个方面去思考下如何利用数据中所 蕴含的潜在关系去探索个性化推荐系统。也希望路过的各位大侠不吝分享呀。


References:

Gilbert Strang, Linear Algebra and Its Applications. Brooks Cole

William H. Press et alNumercial Recipes in C: The Art of Scientific Computing. Cambridge University Press.

Dan Kalman, A Singularly Valuable Decomposition: The SVD of a Matrix, The College Mathematics Journal 27 (1996), 2-23.

If You Liked This, You're Sure to Love ThatThe New York Times, November 21, 2008.


http://blog.sciencenet.cn/blog-696950-699432.html


 由特征值分解到奇异值分解


转载出处http://blog.csdn.net/zhongkejingwang/article/details/43053513

    在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来。本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下。

   SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪,将它应用于推荐系统的是Netflix大奖的获得者Koren,可以在Google上找到他写的文章;用SVD可以很容易得到任意矩阵的满秩分解,用满秩分解可以对数据做压缩。可以用SVD来证明对任意M*N的矩阵均存在如下分解:


这个可以应用在数据降维压缩上!在数据相关性特别大的情况下存储X和Y矩阵比存储A矩阵占用空间更小!

   在开始讲解SVD之前,先补充一点矩阵代数的相关知识。

正交矩阵

   正交矩阵是在欧几里得空间里的叫法,在酉空间里叫酉矩阵,一个正交矩阵对应的变换叫正交变换,这个变换的特点是不改变向量的尺寸和向量间的夹角,那么它到底是个什么样的变换呢?看下面这张图


假设二维空间中的一个向量OA,它在标准坐标系也即e1、e2表示的坐标是中表示为(a,b)'(用'表示转置),现在把它用另一组坐标e1'、e2'表示为(a',b')',存在矩阵U使得(a',b')'=U(a,b)',则U即为正交矩阵。从图中可以看到,正交变换只是将变换向量用另一组正交基表示,在这个过程中并没有对向量做拉伸,也不改变向量的空间位置,加入对两个向量同时做正交变换,那么变换前后这两个向量的夹角显然不会改变。上面的例子只是正交变换的一个方面,即旋转变换,可以把e1'、e2'坐标系看做是e1、e2坐标系经过旋转某个斯塔角度得到,怎么样得到该旋转矩阵U呢?如下

                                                                                       

                                                                  

                                                                   

a'和b'实际上是x在e1'和e2'轴上的投影大小,所以直接做内积可得,then

                                                                                                           

从图中可以看到

                        

所以

                                     

正交阵U行(列)向量之间都是单位正交向量。上面求得的是一个旋转矩阵,它对向量做旋转变换!也许你会有疑问:刚才不是说向量空间位置不变吗?怎么现在又说它被旋转了?对的,这两个并没有冲突,说空间位置不变是绝对的,但是坐标是相对的,加入你站在e1上看OA,随着e1旋转到e1',看OA的位置就会改变。如下图:


如图,如果我选择了e1'、e2'作为新的标准坐标系,那么在新坐标系中OA(原标准坐标系的表示)就变成了OA',这样看来就好像坐标系不动,把OA往顺时针方向旋转了“斯塔”角度,这个操作实现起来很简单:将变换后的向量坐标仍然表示在当前坐标系中。

旋转变换是正交变换的一个方面,这个挺有用的,比如在开发中需要实现某种旋转效果,直接可以用旋转变换实现。正交变换的另一个方面是反射变换,也即e1'的方向与图中方向相反,这个不再讨论。

总结:正交矩阵的行(列)向量都是两两正交的单位向量,正交矩阵对应的变换为正交变换,它有两种表现:旋转和反射。正交矩阵将标准正交基映射为标准正交基(即图中从e1、e2到e1'、e2')

特征值分解——EVD

    在讨论SVD之前先讨论矩阵的特征值分解(EVD),在这里,选择一种特殊的矩阵——对称阵(酉空间中叫hermite矩阵即厄米阵)。对称阵有一个很优美的性质:它总能相似对角化,对称阵不同特征值对应的特征向量两两正交。一个矩阵能相似对角化即说明其特征子空间即为其列空间,若不能对角化则其特征子空间为列空间的子空间。现在假设存在mxm的满秩对称矩阵A,它有m个不同的特征值,设特征值为

                                                                                                   

对应的单位特征向量为

                                                                

则有

                                                                 

进而

                                                               

                                                  

                                                    

所以可得到A的特征值分解(由于对称阵特征向量两两正交,所以U为正交阵,正交阵的逆矩阵等于其转置)

                                                        

这里假设A有m个不同的特征值,实际上,只要A是对称阵其均有如上分解。

矩阵A分解了,相应的,其对应的映射也分解为三个映射。现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换:

                                                                              

U是正交阵U'也是正交阵,所以U'对x的变换是正交变换,它将x用新的坐标系来表示,这个坐标系就是A的所有正交的特征向量构成的坐标系。比如将x用A的所有特征向量表示为:

                                         

则通过第一个变换就可以把x表示为[a1 a2 ... am]':

                           

紧接着,在新的坐标系表示下,由中间那个对角矩阵对新的向量坐标换,其结果就是将向量往各个轴方向拉伸或压缩:

                              

从上图可以看到,如果A不是满秩的话,那么就是说对角阵的对角线上元素存在0,这时候就会导致维度退化,这样就会使映射后的向量落入m维空间的子空间中。

最后一个变换就是U对拉伸或压缩后的向量做变换,由于U和U'是互为逆矩阵,所以U变换是U'变换的逆变换。

因此,从对称阵的分解对应的映射分解来分析一个矩阵的变换特点是非常直观的。假设对称阵特征值全为1那么显然它就是单位阵,如果对称阵的特征值有个别是0其他全是1,那么它就是一个正交投影矩阵,它将m维向量投影到它的列空间中。

根据对称阵A的特征向量,如果A是2*2的,那么就可以在二维平面中找到这样一个矩形,是的这个矩形经过A变换后还是矩形:

                                      

这个矩形的选择就是让其边都落在A的特征向量方向上,如果选择其他矩形的话变换后的图形就不是矩形了!

奇异值分解——SVD

   上面的特征值分解的A矩阵是对称阵,根据EVD可以找到一个(超)矩形使得变换后还是(超)矩形,也即A可以将一组正交基映射到另一组正交基!那么现在来分析:对任意M*N的矩阵,能否找到一组正交基使得经过它变换后还是正交基?答案是肯定的,它就是SVD分解的精髓所在。

   现在假设存在M*N矩阵A,事实上,A矩阵将n维空间中的向量映射到k(k<=m)维空间中,k=Rank(A)。现在的目标就是:在n维空间中找一组正交基,使得经过A变换后还是正交的。假设已经找到这样一组正交基:

                                                               

则A矩阵将这组基映射为:

                                                            

如果要使他们两两正交,即

                                      

根据假设,存在

                                      

所以如果正交基v选择为A'A的特征向量的话,由于A'A是对称阵,v之间两两正交,那么

                                                  

这样就找到了正交基使其映射后还是正交基了,现在,将映射后的正交基单位化:

因为

                  

所以有

                                

所以取单位向量

                                        

由此可得

                

当k < i <= m时,对u1,u2,...,uk进行扩展u(k+1),...,um,使得u1,u2,...,um为m维空间中的一组正交基,即


同样的,对v1,v2,...,vk进行扩展v(k+1),...,vn(这n-k个向量存在于A的零空间中,即Ax=0的解空间的基),使得v1,v2,...,vn为n维空间中的一组正交基,即


则可得到


继而可以得到A矩阵的奇异值分解:

                                                 

                

现在可以来对A矩阵的映射过程进行分析了:如果在n维空间中找到一个(超)矩形,其边都落在A'A的特征向量的方向上,那么经过A变换后的形状仍然为(超)矩形!

vi为A'A的特征向量,称为A的右奇异向量,ui=Avi实际上为AA'的特征向量,称为A的左奇异向量。下面利用SVD证明文章一开始的满秩分解:


利用矩阵分块乘法展开得:


可以看到第二项为0,有

                               


            

则A=XY即是A的满秩分解。

整个SVD的推导过程就是这样,后面会介绍SVD在推荐系统中的具体应用,也就是复现Koren论文中的算法以及其推导过程。


参考文献:A Singularly Valuable Decomposition The SVD of a Matrix


SVD基本过程

https://jingyan.baidu.com/article/9f63fb916ba5e1c8400f0eca.html

阅读全文
0 0
原创粉丝点击