[spark] Standalone模式下Master、WorKer启动流程

来源:互联网 发布:手机天猫淘宝 编辑:程序博客网 时间:2024/06/05 20:01

本文基于spark2.1进行解析

前言

Spark作为分布式的计算框架可支持多种运行模式:

  • 本地运行模式 (单机)
  • 本地伪集群运行模式(单机模拟集群)
  • Standalone Client模式(集群)
  • Standalone Cluster模式(集群)
  • YARN Client模式(集群)
  • YARN Cluster模式(集群)

而Standalone 作为spark自带cluster manager,需要启动Master和Worker守护进程,本文将从源码角度解析两者的启动流程。Master和Worker之间的通信使用的是基于netty的RPC,Spark的Rpc推荐看深入解析Spark中的RPC。

Master 启动

启动Master是通过脚本start-master.sh启动的,里面实际调用的类是:

org.apache.spark.deploy.master.Master

看看其main方法:

def main(argStrings: Array[String]) {    Utils.initDaemon(log)    val conf = new SparkConf    val args = new MasterArguments(argStrings, conf)    // 创建RpcEnv,启动Rpc服务    val (rpcEnv, _, _) = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, conf)    //阻塞等待    rpcEnv.awaitTermination()  }

main方法先获取配置参数创建SparkConf,通过startRpcEnvAndEndpoint启动一个RPCEnv并创建一个Endpoint,调用awaitTermination来阻塞服务端监听请求并且处理。下面细看startRpcEnvAndEndpoint方法:

  def startRpcEnvAndEndpoint(      host: String,      port: Int,      webUiPort: Int,      conf: SparkConf): (RpcEnv, Int, Option[Int]) = {    val securityMgr = new SecurityManager(conf)    // 创建RpcEnv    val rpcEnv = RpcEnv.create(SYSTEM_NAME, host, port, conf, securityMgr)    //通过rpcEnv 创建一个Endpoint    val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,      new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf))    val portsResponse = masterEndpoint.askWithRetry[BoundPortsResponse](BoundPortsRequest)    (rpcEnv, portsResponse.webUIPort, portsResponse.restPort)  }

首先创建了RpcEnv,RpcEnv是整个Spark RPC的核心所在,RPCEndpoint定义了处理消息的逻辑,被创建后就被RpcEnv所管理,整个生命周期顺序为onStart,receive,onStop,其中receive可以被同时调用,ThreadSafeRpcEndpoint中的receive是线程安全的,同一时刻只能被一个线程访问。

该方法中向rpcEnv 注册的Endpoint是Master(继承了ThreadSafeRpcEndpoint),Master的构造器中创建了保存各种信息的变量。

 ...  //一个HashSet用于保存WorkerInfo  val workers = new HashSet[WorkerInfo] //一个HashSet用于保存客户端(SparkSubmit)提交的任务  val apps = new HashSet[ApplicationInfo] //等待调度的App  val waitingApps = new ArrayBuffer[ApplicationInfo] //保存DriverInfo  val drivers = new HashSet[DriverInfo] ...

由于Master是一个Endpoint并被RpcEnv管理,需要先执行生命周期的onStart方法:

override def onStart(): Unit = {   ...    checkForWorkerTimeOutTask = forwardMessageThread.scheduleAtFixedRate(new Runnable {      override def run(): Unit = Utils.tryLogNonFatalError {        self.send(CheckForWorkerTimeOut)      }    }, 0, WORKER_TIMEOUT_MS, TimeUnit.MILLISECONDS)   ...  }

向线程池中加入了一个线程,每隔WORKER_TIMEOUT_MS(默认60秒)时间去检测是否有Worker超时,其实就是向自己发送了一个CheckForWorkerTimeOut事件,稍后再细讲。

Worker启动

多个节点上的Worker是通过脚本start-slaves.sh启动,底层调用的类是:

org.apache.spark.deploy.worker.Worker

看看其main方法:

def main(argStrings: Array[String]) {    Utils.initDaemon(log)    val conf = new SparkConf    val args = new WorkerArguments(argStrings, conf)    val rpcEnv = startRpcEnvAndEndpoint(args.host, args.port, args.webUiPort, args.cores,      args.memory, args.masters, args.workDir, conf = conf)    rpcEnv.awaitTermination()  }

和Master类似,也是先获取配置参数创建SparkConf,接着调用startRpcEnvAndEndpoint启动一个RPCEnv并创建一个Endpoint,调用awaitTermination来阻塞服务端监听请求并且处理。

 def startRpcEnvAndEndpoint(      host: String,      port: Int,      webUiPort: Int,      cores: Int,      memory: Int,      masterUrls: Array[String],      workDir: String,      workerNumber: Option[Int] = None,      conf: SparkConf = new SparkConf): RpcEnv = {    // The LocalSparkCluster runs multiple local sparkWorkerX RPC Environments    val systemName = SYSTEM_NAME + workerNumber.map(_.toString).getOrElse("")    val securityMgr = new SecurityManager(conf)    val rpcEnv = RpcEnv.create(systemName, host, port, conf, securityMgr)    val masterAddresses = masterUrls.map(RpcAddress.fromSparkURL(_))    rpcEnv.setupEndpoint(ENDPOINT_NAME, new Worker(rpcEnv, webUiPort, cores, memory,      masterAddresses, ENDPOINT_NAME, workDir, conf, securityMgr))    rpcEnv  }

这里是通过new了一个Worker实例来作为Endpoint并注册到RpcEnv中,Worker的构造器中初始化了心跳超时时间为Master端的1/4及其他变量

Worker向Master注册

Worker需要根据生命周期执行onStart()方法:

override def onStart() {   ...    registerWithMaster()   ...  }

在onStart()方法中调用了registerWithMaster来向Master来注册自己:

private def registerWithMaster() {    // onDisconnected may be triggered multiple times, so don't attempt registration    // if there are outstanding registration attempts scheduled.    registrationRetryTimer match {      case None =>        // 是否已注册        registered = false        // 尝试向所有Master注册自己        registerMasterFutures = tryRegisterAllMasters()        // 尝试连接次数        connectionAttemptCount = 0        // 网络或者Master故障的时候就需要重新注册自己        // 注册重试次数超过阈值则直接退出        registrationRetryTimer = Some(forwordMessageScheduler.scheduleAtFixedRate(          new Runnable {            override def run(): Unit = Utils.tryLogNonFatalError {              Option(self).foreach(_.send(ReregisterWithMaster))            }          },          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,          INITIAL_REGISTRATION_RETRY_INTERVAL_SECONDS,          TimeUnit.SECONDS))      case Some(_) =>        logInfo("Not spawning another attempt to register with the master, since there is an" +          " attempt scheduled already.")    }  }

registrationRetryTimer第一次调用肯定为None,通过tryRegisterAllMasters向Master注册自己,后面还启动了一个线程在有限次数内去尝试重新注册(网络或者Master出现故障是需要重新注册)。这里先看tryRegisterAllMasters方法是如何向Master注册的:

private def tryRegisterAllMasters(): Array[JFuture[_]] = {    masterRpcAddresses.map { masterAddress =>      registerMasterThreadPool.submit(new Runnable {        override def run(): Unit = {          try {            logInfo("Connecting to master " + masterAddress + "...")            val masterEndpoint = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME)            registerWithMaster(masterEndpoint)          } catch {            case ie: InterruptedException => // Cancelled            case NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)          }        }      })    }  }

这里调用了rpcEnv.setupEndpointRef,RpcEndpointRef 是 RpcEnv 中的 RpcEndpoint 的引用,是一个序列化的实体以便于通过网络传送或保存以供之后使用。一个 RpcEndpointRef 有一个地址和名字。可以调用 RpcEndpointRef 的 send 方法发送异步的单向的消息给对应的 RpcEndpoint 。

这里整段代码意思即是:遍历所有masterRpcAddresses,调用registerWithMaster方法,并传入master端的RpcEndpoint引用RpcEndpointRef ,继续看看registerWithMaster方法:

private def registerWithMaster(masterEndpoint: RpcEndpointRef): Unit = {    masterEndpoint.ask[RegisterWorkerResponse](RegisterWorker(      workerId, host, port, self, cores, memory, workerWebUiUrl))      .onComplete {        // This is a very fast action so we can use "ThreadUtils.sameThread"        case Success(msg) =>          Utils.tryLogNonFatalError {            handleRegisterResponse(msg)          }        case Failure(e) =>          logError(s"Cannot register with master: ${masterEndpoint.address}", e)          System.exit(1)      }(ThreadUtils.sameThread)  }

通过RpcEndpointRef 和Master建立通信向Master发送RegisterWorker消息,并带入workerid,host,Port,cores,内存等参数信息,并有成功或者失败的回调函数稍后讲解。

Master 接收Worker注册

在Master中通过receiveAndReply方法处理各种需要回应的事件(单向消息通过receive),对于Worker注册消息RegisterWorker处理逻辑:

case RegisterWorker(        id, workerHost, workerPort, workerRef, cores, memory, workerWebUiUrl) =>      logInfo("Registering worker %s:%d with %d cores, %s RAM".format(        workerHost, workerPort, cores, Utils.megabytesToString(memory)))      // 当前Master处于STANDBY      if (state == RecoveryState.STANDBY) {        context.reply(MasterInStandby)      // Worker已经注册过了      } else if (idToWorker.contains(id)) {        context.reply(RegisterWorkerFailed("Duplicate worker ID"))      } else {        // 根据Worker注册信息为Worker创建WorkerInfo        val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,          workerRef, workerWebUiUrl)        if (registerWorker(worker)) {          // 持久化记录Worker信息          persistenceEngine.addWorker(worker)          // 向Worker回复注册成功消息          context.reply(RegisteredWorker(self, masterWebUiUrl))          // 有了新的Worker,资源新增,为等待的app进行调度          schedule()        } else {          val workerAddress = worker.endpoint.address          logWarning("Worker registration failed. Attempted to re-register worker at same " +            "address: " + workerAddress)          // 向Worker回复注册失败消息          context.reply(RegisterWorkerFailed("Attempted to re-register worker at same address: "            + workerAddress))        }      }
  1. 若当前Master处于STANDBY状态,直接返回MasterInStandby消息
  2. 若Worker已经注册过了,直接返回RegisterWorkerFailed消息
  3. 根据Worker注册信息为Worker创建WorkerInfo,调用registerWorker方法进行注册:
    • 若注册成功则持久化这个Worker信息,并向Worker回复注册成功消息,另外,多了一个Worker意味着资源的增加会通过schedule()去调度等待调度的apps。
    • 若注册失败,则直接向Worker回复注册失败消息。

那是怎么判断是否注册成功呢?跟进registerWorker方法:

private def registerWorker(worker: WorkerInfo): Boolean = {    // There may be one or more refs to dead workers on this same node (w/ different ID's),    // remove them.    workers.filter { w =>      (w.host == worker.host && w.port == worker.port) && (w.state == WorkerState.DEAD)    }.foreach { w =>      workers -= w    }    // 获取新worker的workerAddress     val workerAddress = worker.endpoint.address    if (addressToWorker.contains(workerAddress)) {      // 根据workerAddress 获取以前注册的老Worker      val oldWorker = addressToWorker(workerAddress)      // 若为UNKNOWN则说明正在Master recovery,Worker处于恢复中      if (oldWorker.state == WorkerState.UNKNOWN) {        // 移除老Worker,接受新注册的Worker        removeWorker(oldWorker)      } else {        logInfo("Attempted to re-register worker at same address: " + workerAddress)        return false      }    }    // 跟新变量    workers += worker    idToWorker(worker.id) = worker    addressToWorker(workerAddress) = worker    true  }

遍历所有管理的Worker,若有与新注册的Worker相同的host,port且处于Dead(超时)状态的Worker则直接从workers中移除。若管理的addressToWorker已经存在新注册的Worker一样的workerAddress,则获取老Worker,若状态是UNKNOWN说明正在Master recovery,Worker正处于恢复中,则将老Worker移除,将新Worker直接加入并成功返回,若老Worker是其他状态则说明已经重复注册了,返回失败。

Worker接收Master注册反馈消息

private def registerWithMaster(masterEndpoint: RpcEndpointRef): Unit = {    masterEndpoint.ask[RegisterWorkerResponse](RegisterWorker(      workerId, host, port, self, cores, memory, workerWebUiUrl))      .onComplete {        // This is a very fast action so we can use "ThreadUtils.sameThread"        case Success(msg) =>          Utils.tryLogNonFatalError {            handleRegisterResponse(msg)          }        case Failure(e) =>          logError(s"Cannot register with master: ${masterEndpoint.address}", e)          System.exit(1)      }(ThreadUtils.sameThread)  }

在Worker向Master注册的时候就是调用的这个registerWithMaster方法,后随有回调方法处理结果,通过handleRegisterResponse来处理各种类型的反馈消息:

private def handleRegisterResponse(msg: RegisterWorkerResponse): Unit = synchronized {    msg match {      // 成功注册      case RegisteredWorker(masterRef, masterWebUiUrl) =>        logInfo("Successfully registered with master " + masterRef.address.toSparkURL)        // 标记成功注册        registered = true        // 跟新映射,删除其他的registeration retry        changeMaster(masterRef, masterWebUiUrl)        // 向Master发送心跳        forwordMessageScheduler.scheduleAtFixedRate(new Runnable {          override def run(): Unit = Utils.tryLogNonFatalError {            self.send(SendHeartbeat)          }        }, 0, HEARTBEAT_MILLIS, TimeUnit.MILLISECONDS)       ...      // 注册失败,直接退出进程      case RegisterWorkerFailed(message) =>        if (!registered) {          logError("Worker registration failed: " + message)          System.exit(1)        }      // Master不是处于Active的Master,忽略      case MasterInStandby =>        // Ignore. Master not yet ready.    }  }
  1. 当注册Worker失败收到RegisterWorkerFailed消息,则退出。
  2. 当注册的Master处于Standby状态,直接忽略。
  3. 注册Worker成功返回RegisteredWorker消息时,先标记注册成功,然后通过changeMaster更改一些变量(如activeMasterUrl,master,connected等),并删除当前其他正在重试的注册。然后新建了一个task到线程池执行,该线程每隔HEARTBEAT_MILLIS时间向自己发送一个SendHeartbeat消息,在消息处理方法receive里面可看到消息处理方法,即向Master发送心跳:
 case SendHeartbeat =>      if (connected) { sendToMaster(Heartbeat(workerId, self)) }

Master 接收心跳

case Heartbeat(workerId, worker) =>      idToWorker.get(workerId) match {        case Some(workerInfo) =>          workerInfo.lastHeartbeat = System.currentTimeMillis()        case None =>          if (workers.map(_.id).contains(workerId)) {            logWarning(s"Got heartbeat from unregistered worker $workerId." +              " Asking it to re-register.")            worker.send(ReconnectWorker(masterUrl))          } else {            logWarning(s"Got heartbeat from unregistered worker $workerId." +              " This worker was never registered, so ignoring the heartbeat.")          }      }

master端获取对应的workerInfo,若有则跟新上次获取心跳时间lastHeartbeat,若没有则向Worker发送需要重新建立连接的消息。

Master 检测Worker心跳超时

另外,由上文可知在Master的生命周期onStart里专门启动了一个线程检查worker是否超时,看看Master是如何处理的:

case CheckForWorkerTimeOut =>      timeOutDeadWorkers()private def timeOutDeadWorkers() {    // Copy the workers into an array so we don't modify the hashset while iterating through it    val currentTime = System.currentTimeMillis()    val toRemove = workers.filter(_.lastHeartbeat < currentTime - WORKER_TIMEOUT_MS).toArray    for (worker <- toRemove) {      if (worker.state != WorkerState.DEAD) {        logWarning("Removing %s because we got no heartbeat in %d seconds".format(          worker.id, WORKER_TIMEOUT_MS / 1000))        removeWorker(worker)      } else {        if (worker.lastHeartbeat < currentTime - ((REAPER_ITERATIONS + 1) * WORKER_TIMEOUT_MS)) {          workers -= worker // we've seen this DEAD worker in the UI, etc. for long enough; cull it        }      }    }  }

遍历所有管理的Worker,若上次心跳时间离现在已经超过超时时间则判断为超时,将从worker列表里移除。