spark源码分析Master与Worker启动流程篇

来源:互联网 发布:cda数据 编辑:程序博客网 时间:2024/05/21 08:44

spark通信流程

概述

spark作为一套高效的分布式运算框架,但是想要更深入的学习它,就要通过分析spark的源码,不但可以更好的帮助理解spark的工作过程,还可以提高对集群的排错能力,本文主要关注的是Spark的Master的启动流程与Worker启动流程。

现在Spark最新版本为1.6,但是代码的逻辑不够清晰,不便于理解,这里以1.3为准

Master启动

我们启动一个Master是通过Shell命令启动了一个脚本start-master.sh开始的,这个脚本的启动流程如下

start-master.sh  -> spark-daemon.sh start org.apache.spark.deploy.master.Master

我们可以看到脚本首先启动了一个org.apache.spark.deploy.master.Master类,启动时会传入一些参数,比如cpu的执行核数,内存大小,app的main方法等

查看Master类的main方法

private[spark] object Master extends Logging {  val systemName = "sparkMaster"  private val actorName = "Master"  //master启动的入口  def main(argStrings: Array[String]) {    SignalLogger.register(log)    //创建SparkConf    val conf = new SparkConf    //保存参数到SparkConf    val args = new MasterArguments(argStrings, conf)    //创建ActorSystem和Actor    val (actorSystem, _, _, _) = startSystemAndActor(args.host, args.port, args.webUiPort, conf)    //等待结束    actorSystem.awaitTermination()  }

这里主要看startSystemAndActor方法

  /**   * Start the Master and return a four tuple of:   *   (1) The Master actor system   *   (2) The bound port   *   (3) The web UI bound port   *   (4) The REST server bound port, if any   */  def startSystemAndActor(      host: String,      port: Int,      webUiPort: Int,      conf: SparkConf): (ActorSystem, Int, Int, Option[Int]) = {    val securityMgr = new SecurityManager(conf)    //利用AkkaUtils创建ActorSystem    val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf,      securityManager = securityMgr)    val actor = actorSystem.actorOf(      Props(classOf[Master], host, boundPort, webUiPort, securityMgr, conf), actorName)   ....  }}

spark底层通信使用的是Akka
通过ActorSystem创建Actor -> actorSystem.actorOf, 就会执行Master的构造方法->然后执行Actor生命周期方法
执行Master的构造方法初始化一些变量

 private[spark] class Master(    host: String,    port: Int,    webUiPort: Int,    val securityMgr: SecurityManager,    val conf: SparkConf)  extends Actor with ActorLogReceive with Logging with LeaderElectable {  //主构造器  //启用定期器功能  import context.dispatcher   // to use Akka's scheduler.schedule()  val hadoopConf = SparkHadoopUtil.get.newConfiguration(conf)  def createDateFormat = new SimpleDateFormat("yyyyMMddHHmmss")  // For application IDs  //woker超时时间  val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000  val RETAINED_APPLICATIONS = conf.getInt("spark.deploy.retainedApplications", 200)  val RETAINED_DRIVERS = conf.getInt("spark.deploy.retainedDrivers", 200)  val REAPER_ITERATIONS = conf.getInt("spark.dead.worker.persistence", 15)  val RECOVERY_MODE = conf.get("spark.deploy.recoveryMode", "NONE")  //一个HashSet用于保存WorkerInfo  val workers = new HashSet[WorkerInfo]  //一个HashMap用保存workid -> WorkerInfo  val idToWorker = new HashMap[String, WorkerInfo]  val addressToWorker = new HashMap[Address, WorkerInfo]  //一个HashSet用于保存客户端(SparkSubmit)提交的任务  val apps = new HashSet[ApplicationInfo]  //一个HashMap Appid-》 ApplicationInfo  val idToApp = new HashMap[String, ApplicationInfo]  val actorToApp = new HashMap[ActorRef, ApplicationInfo]  val addressToApp = new HashMap[Address, ApplicationInfo]  //等待调度的App  val waitingApps = new ArrayBuffer[ApplicationInfo]  val completedApps = new ArrayBuffer[ApplicationInfo]  var nextAppNumber = 0  val appIdToUI = new HashMap[String, SparkUI]  //保存DriverInfo  val drivers = new HashSet[DriverInfo]  val completedDrivers = new ArrayBuffer[DriverInfo]  val waitingDrivers = new ArrayBuffer[DriverInfo] // Drivers currently spooled for scheduling

主构造器执行完就会执行preStart –》执行完receive方法

  //启动定时器,进行定时检查超时的worker  //重点看一下CheckForWorkerTimeOut  context.system.scheduler.schedule(0 millis, WORKER_TIMEOUT millis, self, CheckForWorkerTimeOut)

preStart方法里创建了一个定时器,定时检查Woker的超时时间 val WORKER_TIMEOUT = conf.getLong("spark.worker.timeout", 60) * 1000 默认为60秒

到此Master的初始化的主要过程到我们已经看到了,主要就是构造一个Master的Actor进行等待消息,并初始化了一堆集合来保存Worker信息,和一个定时器来检查Worker的超时

Master启动时序图

Woker的启动

通过Shell脚本执行salves.sh -> 通过读取slaves 通过ssh的方式启动远端的worker
spark-daemon.sh start org.apache.spark.deploy.worker.Worker

脚本会启动org.apache.spark.deploy.worker.Worker

看Worker源码

private[spark] object Worker extends Logging {  //Worker启动的入口  def main(argStrings: Array[String]) {    SignalLogger.register(log)    val conf = new SparkConf    val args = new WorkerArguments(argStrings, conf)    //新创ActorSystem和Actor    val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores,      args.memory, args.masters, args.workDir)    actorSystem.awaitTermination()  }

这里最重要的是Woker的startSystemAndActor

  def startSystemAndActor(      host: String,      port: Int,      webUiPort: Int,      cores: Int,      memory: Int,      masterUrls: Array[String],      workDir: String,      workerNumber: Option[Int] = None,      conf: SparkConf = new SparkConf): (ActorSystem, Int) = {    // The LocalSparkCluster runs multiple local sparkWorkerX actor systems    val systemName = "sparkWorker" + workerNumber.map(_.toString).getOrElse("")    val actorName = "Worker"    val securityMgr = new SecurityManager(conf)    //通过AkkaUtils ActorSystem    val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port,      conf = conf, securityManager = securityMgr)    val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl(_, AkkaUtils.protocol(actorSystem)))    //通过actorSystem.actorOf创建Actor   Worker-》执行构造器 -》 preStart -》 receice    actorSystem.actorOf(Props(classOf[Worker], host, boundPort, webUiPort, cores, memory,      masterAkkaUrls, systemName, actorName,  workDir, conf, securityMgr), name = actorName)    (actorSystem, boundPort)  }

这里Worker同样的构造了一个属于Worker的Actor对象,到此Worker的启动初始化完成

Worker与Master通信

根据Actor生命周期接着Worker的preStart方法被调用

  override def preStart() {    assert(!registered)    logInfo("Starting Spark worker %s:%d with %d cores, %s RAM".format(      host, port, cores, Utils.megabytesToString(memory)))    logInfo(s"Running Spark version ${org.apache.spark.SPARK_VERSION}")    logInfo("Spark home: " + sparkHome)    createWorkDir()    context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent])    shuffleService.startIfEnabled()    webUi = new WorkerWebUI(this, workDir, webUiPort)    webUi.bind()    //Worker向Master注册    registerWithMaster()    ....  }

这里调用了一个registerWithMaster方法,开始向Master注册

 def registerWithMaster() {    // DisassociatedEvent may be triggered multiple times, so don't attempt registration    // if there are outstanding registration attempts scheduled.    registrationRetryTimer match {      case None =>        registered = false        //开始注册        tryRegisterAllMasters()        ....    }  }

registerWithMaster里通过匹配调用了tryRegisterAllMasters方法
,接下来看

  private def tryRegisterAllMasters() {    //遍历master的地址    for (masterAkkaUrl <- masterAkkaUrls) {      logInfo("Connecting to master " + masterAkkaUrl + "...")      //Worker跟Mater建立连接      val actor = context.actorSelection(masterAkkaUrl)      //向Master发送注册信息      actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)    }  }

通过masterAkkaUrl和Master建立连接后
actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)Worker向Master发送了一个消息,带去一些参数,id,主机,端口,cpu核数,内存等待

override def receiveWithLogging = {    ......    //接受来自Worker的注册信息    case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>    {      logInfo("Registering worker %s:%d with %d cores, %s RAM".format(        workerHost, workerPort, cores, Utils.megabytesToString(memory)))      if (state == RecoveryState.STANDBY) {        // ignore, don't send response        //判断这个worker是否已经注册过      } else if (idToWorker.contains(id)) {        //如果注册过,告诉worker注册失败        sender ! RegisterWorkerFailed("Duplicate worker ID")      } else {        //没有注册过,把来自Worker的注册信息封装到WorkerInfo当中        val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,          sender, workerUiPort, publicAddress)        if (registerWorker(worker)) {          //用持久化引擎记录Worker的信息          persistenceEngine.addWorker(worker)          //向Worker反馈信息,告诉Worker注册成功          sender ! RegisteredWorker(masterUrl, masterWebUiUrl)          schedule()        } else {          val workerAddress = worker.actor.path.address          logWarning("Worker registration failed. Attempted to re-register worker at same " +            "address: " + workerAddress)          sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: "            + workerAddress)        }      }    }

这里是最主要的内容;
receiveWithLogging里会轮询到Worker发送的消息,
Master收到消息后将参数封装成WorkInfo对象添加到集合中,并加入到持久化引擎中
sender ! RegisteredWorker(masterUrl, masterWebUiUrl)向Worker发送一个消息反馈

接下来看Worker的receiveWithLogging

override def receiveWithLogging = {    case RegisteredWorker(masterUrl, masterWebUiUrl) =>      logInfo("Successfully registered with master " + masterUrl)      registered = true      changeMaster(masterUrl, masterWebUiUrl)      //启动定时器,定时发送心跳Heartbeat      context.system.scheduler.schedule(0 millis, HEARTBEAT_MILLIS millis, self, SendHeartbeat)      if (CLEANUP_ENABLED) {        logInfo(s"Worker cleanup enabled; old application directories will be deleted in: $workDir")        context.system.scheduler.schedule(CLEANUP_INTERVAL_MILLIS millis,          CLEANUP_INTERVAL_MILLIS millis, self, WorkDirCleanup)      }

worker接受来自Master的注册成功的反馈信息,启动定时器,定时发送心跳Heartbeat

    case SendHeartbeat =>      //worker发送心跳的目的就是为了报活      if (connected) { master ! Heartbeat(workerId) }

Master端的receiveWithLogging收到心跳消息

  override def receiveWithLogging = {        ....    case Heartbeat(workerId) => {      idToWorker.get(workerId) match {        case Some(workerInfo) =>          //更新最后一次心跳时间          workerInfo.lastHeartbeat = System.currentTimeMillis()          .....      }    } }

记录并更新workerInfo.lastHeartbeat = System.currentTimeMillis()最后一次心跳时间

Master的定时任务会不断的发送一个CheckForWorkerTimeOut内部消息不断的轮询集合里的Worker信息,如果超过60秒就将Worker信息移除

  //检查超时的Worker    case CheckForWorkerTimeOut => {      timeOutDeadWorkers()    }

timeOutDeadWorkers方法

  def timeOutDeadWorkers() {    // Copy the workers into an array so we don't modify the hashset while iterating through it    val currentTime = System.currentTimeMillis()    val toRemove = workers.filter(_.lastHeartbeat < currentTime - WORKER_TIMEOUT).toArray    for (worker <- toRemove) {      if (worker.state != WorkerState.DEAD) {        logWarning("Removing %s because we got no heartbeat in %d seconds".format(          worker.id, WORKER_TIMEOUT/1000))        removeWorker(worker)      } else {        if (worker.lastHeartbeat < currentTime - ((REAPER_ITERATIONS + 1) * WORKER_TIMEOUT)) {          workers -= worker // we've seen this DEAD worker in the UI, etc. for long enough; cull it        }      }    }  }

如果 (最后一次心跳时间<当前时间-超时时间)则判断为Worker超时,
将集合里的信息移除。
当下一次收到心跳信息时,如果是已注册过的,workerId不为空,但是WorkerInfo已被移除的条件,就会sender ! ReconnectWorker(masterUrl)发送一个重新注册的消息

 case None =>          if (workers.map(_.id).contains(workerId)) {            logWarning(s"Got heartbeat from unregistered worker $workerId." +              " Asking it to re-register.")            //发送重新注册的消息            sender ! ReconnectWorker(masterUrl)          } else {            logWarning(s"Got heartbeat from unregistered worker $workerId." +              " This worker was never registered, so ignoring the heartbeat.")          }

Worker与Master时序图

Master与Worker启动以后的大致的通信流程到此

  1. spark源码分析Master与Worker启动流程篇
  2. spark源码分析之Executor启动与任务提交篇
  3. spark源码分析之任务调度篇
1 0
原创粉丝点击