SKlearn中guassian mixture学习及源码学习(架构)

来源:互联网 发布:java 内嵌chrome 编辑:程序博客网 时间:2024/06/08 15:49

通过学习sklearn说明中的guasian mixture 的代码学习,深入学习源码, 

了解python模块的编写的。

代码:

import numpy as npimport matplotlib.pyplot as pltfrom matplotlib.colors import LogNormfrom sklearn import mixturen_samples = 300# generate random sample, two componentsnp.random.seed(0)# generate spherical data centered on (20, 20)shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20])# generate zero centered stretched Gaussian dataC = np.array([[0., -0.7], [3.5, .7]])stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C)# concatenate the two datasets into the final training setX_train = np.vstack([shifted_gaussian, stretched_gaussian])# fit a Gaussian Mixture Model with two componentsclf = mixture.GaussianMixture(n_components=2, covariance_type='full')clf.fit(X_train)# display predicted scores by the model as a contour plotx = np.linspace(-20., 30.)y = np.linspace(-20., 40.)X, Y = np.meshgrid(x, y)XX = np.array([X.ravel(), Y.ravel()]).TZ = -clf.score_samples(XX)Z = Z.reshape(X.shape)CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),levels=np.logspace(0, 3, 10))
CB = plt.colorbar(CS, shrink=0.8, extend='both')plt.scatter(X_train[:, 0], X_train[:, 1], .8)plt.title('Negative log-likelihood predicted by a GMM')plt.axis('tight')plt.show()


执行结果

gaussian mixture源码如下:

"""Gaussian Mixture Model."""# Author: Wei Xue <xuewei4d@gmail.com># Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com># License: BSD 3 clauseimport numpy as npfrom scipy import linalgfrom .base import BaseMixture, _check_shapefrom ..externals.six.moves import zipfrom ..utils import check_arrayfrom ..utils.validation import check_is_fittedfrom ..utils.extmath import row_norms################################################################################ Gaussian mixture shape checkers used by the GaussianMixture classdef _check_weights(weights, n_components):    """Check the user provided 'weights'.    Parameters    ----------    weights : array-like, shape (n_components,)        The proportions of components of each mixture.    n_components : int        Number of components.    Returns    -------    weights : array, shape (n_components,)    """    weights = check_array(weights, dtype=[np.float64, np.float32],                          ensure_2d=False)    _check_shape(weights, (n_components,), 'weights')    # check range    if (any(np.less(weights, 0.)) or            any(np.greater(weights, 1.))):        raise ValueError("The parameter 'weights' should be in the range "                         "[0, 1], but got max value %.5f, min value %.5f"                         % (np.min(weights), np.max(weights)))    # check normalization    if not np.allclose(np.abs(1. - np.sum(weights)), 0.):        raise ValueError("The parameter 'weights' should be normalized, "                         "but got sum(weights) = %.5f" % np.sum(weights))    return weightsdef _check_means(means, n_components, n_features):    """Validate the provided 'means'.    Parameters    ----------    means : array-like, shape (n_components, n_features)        The centers of the current components.    n_components : int        Number of components.    n_features : int        Number of features.    Returns    -------    means : array, (n_components, n_features)    """    means = check_array(means, dtype=[np.float64, np.float32], ensure_2d=False)    _check_shape(means, (n_components, n_features), 'means')    return meansdef _check_precision_positivity(precision, covariance_type):    """Check a precision vector is positive-definite."""    if np.any(np.less_equal(precision, 0.0)):        raise ValueError("'%s precision' should be "                         "positive" % covariance_type)def _check_precision_matrix(precision, covariance_type):    """Check a precision matrix is symmetric and positive-definite."""    if not (np.allclose(precision, precision.T) and            np.all(linalg.eigvalsh(precision) > 0.)):        raise ValueError("'%s precision' should be symmetric, "                         "positive-definite" % covariance_type)def _check_precisions_full(precisions, covariance_type):    """Check the precision matrices are symmetric and positive-definite."""    for k, prec in enumerate(precisions):        prec = _check_precision_matrix(prec, covariance_type)def _check_precisions(precisions, covariance_type, n_components, n_features):    """Validate user provided precisions.    Parameters    ----------    precisions : array-like,        'full' : shape of (n_components, n_features, n_features)        'tied' : shape of (n_features, n_features)        'diag' : shape of (n_components, n_features)        'spherical' : shape of (n_components,)    covariance_type : string    n_components : int        Number of components.    n_features : int        Number of features.    Returns    -------    precisions : array    """    precisions = check_array(precisions, dtype=[np.float64, np.float32],                             ensure_2d=False,                             allow_nd=covariance_type == 'full')    precisions_shape = {'full': (n_components, n_features, n_features),                        'tied': (n_features, n_features),                        'diag': (n_components, n_features),                        'spherical': (n_components,)}    _check_shape(precisions, precisions_shape[covariance_type],                 '%s precision' % covariance_type)    _check_precisions = {'full': _check_precisions_full,                         'tied': _check_precision_matrix,                         'diag': _check_precision_positivity,                         'spherical': _check_precision_positivity}    _check_precisions[covariance_type](precisions, covariance_type)    return precisions################################################################################ Gaussian mixture parameters estimators (used by the M-Step)def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar):    """Estimate the full covariance matrices.    Parameters    ----------    resp : array-like, shape (n_samples, n_components)    X : array-like, shape (n_samples, n_features)    nk : array-like, shape (n_components,)    means : array-like, shape (n_components, n_features)    reg_covar : float    Returns    -------    covariances : array, shape (n_components, n_features, n_features)        The covariance matrix of the current components.    """    n_components, n_features = means.shape    covariances = np.empty((n_components, n_features, n_features))    for k in range(n_components):        diff = X - means[k]        covariances[k] = np.dot(resp[:, k] * diff.T, diff) / nk[k]        covariances[k].flat[::n_features + 1] += reg_covar    return covariancesdef _estimate_gaussian_covariances_tied(resp, X, nk, means, reg_covar):    """Estimate the tied covariance matrix.    Parameters    ----------    resp : array-like, shape (n_samples, n_components)    X : array-like, shape (n_samples, n_features)    nk : array-like, shape (n_components,)    means : array-like, shape (n_components, n_features)    reg_covar : float    Returns    -------    covariance : array, shape (n_features, n_features)        The tied covariance matrix of the components.    """    avg_X2 = np.dot(X.T, X)    avg_means2 = np.dot(nk * means.T, means)    covariance = avg_X2 - avg_means2    covariance /= nk.sum()    covariance.flat[::len(covariance) + 1] += reg_covar    return covariancedef _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar):    """Estimate the diagonal covariance vectors.    Parameters    ----------    responsibilities : array-like, shape (n_samples, n_components)    X : array-like, shape (n_samples, n_features)    nk : array-like, shape (n_components,)    means : array-like, shape (n_components, n_features)    reg_covar : float    Returns    -------    covariances : array, shape (n_components, n_features)        The covariance vector of the current components.    """    avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis]    avg_means2 = means ** 2    avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis]    return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covardef _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar):    """Estimate the spherical variance values.    Parameters    ----------    responsibilities : array-like, shape (n_samples, n_components)    X : array-like, shape (n_samples, n_features)    nk : array-like, shape (n_components,)    means : array-like, shape (n_components, n_features)    reg_covar : float    Returns    -------    variances : array, shape (n_components,)        The variance values of each components.    """    return _estimate_gaussian_covariances_diag(resp, X, nk,                                               means, reg_covar).mean(1)def _estimate_gaussian_parameters(X, resp, reg_covar, covariance_type):    """Estimate the Gaussian distribution parameters.    Parameters    ----------    X : array-like, shape (n_samples, n_features)        The input data array.    resp : array-like, shape (n_samples, n_components)        The responsibilities for each data sample in X.    reg_covar : float        The regularization added to the diagonal of the covariance matrices.    covariance_type : {'full', 'tied', 'diag', 'spherical'}        The type of precision matrices.    Returns    -------    nk : array-like, shape (n_components,)        The numbers of data samples in the current components.    means : array-like, shape (n_components, n_features)        The centers of the current components.    covariances : array-like        The covariance matrix of the current components.        The shape depends of the covariance_type.    """    nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps    means = np.dot(resp.T, X) / nk[:, np.newaxis]    covariances = {"full": _estimate_gaussian_covariances_full,                   "tied": _estimate_gaussian_covariances_tied,                   "diag": _estimate_gaussian_covariances_diag,                   "spherical": _estimate_gaussian_covariances_spherical                   }[covariance_type](resp, X, nk, means, reg_covar)    return nk, means, covariancesdef _compute_precision_cholesky(covariances, covariance_type):    """Compute the Cholesky decomposition of the precisions.    Parameters    ----------    covariances : array-like        The covariance matrix of the current components.        The shape depends of the covariance_type.    covariance_type : {'full', 'tied', 'diag', 'spherical'}        The type of precision matrices.    Returns    -------    precisions_cholesky : array-like        The cholesky decomposition of sample precisions of the current        components. The shape depends of the covariance_type.    """    estimate_precision_error_message = (        "Fitting the mixture model failed because some components have "        "ill-defined empirical covariance (for instance caused by singleton "        "or collapsed samples). Try to decrease the number of components, "        "or increase reg_covar.")    if covariance_type in 'full':        n_components, n_features, _ = covariances.shape        precisions_chol = np.empty((n_components, n_features, n_features))        for k, covariance in enumerate(covariances):            try:                cov_chol = linalg.cholesky(covariance, lower=True)            except linalg.LinAlgError:                raise ValueError(estimate_precision_error_message)            precisions_chol[k] = linalg.solve_triangular(cov_chol,                                                         np.eye(n_features),                                                         lower=True).T    elif covariance_type == 'tied':        _, n_features = covariances.shape        try:            cov_chol = linalg.cholesky(covariances, lower=True)        except linalg.LinAlgError:            raise ValueError(estimate_precision_error_message)        precisions_chol = linalg.solve_triangular(cov_chol, np.eye(n_features),                                                  lower=True).T    else:        if np.any(np.less_equal(covariances, 0.0)):            raise ValueError(estimate_precision_error_message)        precisions_chol = 1. / np.sqrt(covariances)    return precisions_chol################################################################################ Gaussian mixture probability estimatorsdef _compute_log_det_cholesky(matrix_chol, covariance_type, n_features):    """Compute the log-det of the cholesky decomposition of matrices.    Parameters    ----------    matrix_chol : array-like,        Cholesky decompositions of the matrices.        'full' : shape of (n_components, n_features, n_features)        'tied' : shape of (n_features, n_features)        'diag' : shape of (n_components, n_features)        'spherical' : shape of (n_components,)    covariance_type : {'full', 'tied', 'diag', 'spherical'}    n_features : int        Number of features.    Returns    -------    log_det_precision_chol : array-like, shape (n_components,)        The determinant of the precision matrix for each component.    """    if covariance_type == 'full':        n_components, _, _ = matrix_chol.shape        log_det_chol = (np.sum(np.log(            matrix_chol.reshape(                n_components, -1)[:, ::n_features + 1]), 1))    elif covariance_type == 'tied':        log_det_chol = (np.sum(np.log(np.diag(matrix_chol))))    elif covariance_type == 'diag':        log_det_chol = (np.sum(np.log(matrix_chol), axis=1))    else:        log_det_chol = n_features * (np.log(matrix_chol))    return log_det_choldef _estimate_log_gaussian_prob(X, means, precisions_chol, covariance_type):    """Estimate the log Gaussian probability.    Parameters    ----------    X : array-like, shape (n_samples, n_features)    means : array-like, shape (n_components, n_features)    precisions_chol : array-like,        Cholesky decompositions of the precision matrices.        'full' : shape of (n_components, n_features, n_features)        'tied' : shape of (n_features, n_features)        'diag' : shape of (n_components, n_features)        'spherical' : shape of (n_components,)    covariance_type : {'full', 'tied', 'diag', 'spherical'}    Returns    -------    log_prob : array, shape (n_samples, n_components)    """    n_samples, n_features = X.shape    n_components, _ = means.shape    # det(precision_chol) is half of det(precision)    log_det = _compute_log_det_cholesky(        precisions_chol, covariance_type, n_features)    if covariance_type == 'full':        log_prob = np.empty((n_samples, n_components))        for k, (mu, prec_chol) in enumerate(zip(means, precisions_chol)):            y = np.dot(X, prec_chol) - np.dot(mu, prec_chol)            log_prob[:, k] = np.sum(np.square(y), axis=1)    elif covariance_type == 'tied':        log_prob = np.empty((n_samples, n_components))        for k, mu in enumerate(means):            y = np.dot(X, precisions_chol) - np.dot(mu, precisions_chol)            log_prob[:, k] = np.sum(np.square(y), axis=1)    elif covariance_type == 'diag':        precisions = precisions_chol ** 2        log_prob = (np.sum((means ** 2 * precisions), 1) -                    2. * np.dot(X, (means * precisions).T) +                    np.dot(X ** 2, precisions.T))    elif covariance_type == 'spherical':        precisions = precisions_chol ** 2        log_prob = (np.sum(means ** 2, 1) * precisions -                    2 * np.dot(X, means.T * precisions) +                    np.outer(row_norms(X, squared=True), precisions))    return -.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_detclass GaussianMixture(BaseMixture):    """Gaussian Mixture.    Representation of a Gaussian mixture model probability distribution.    This class allows to estimate the parameters of a Gaussian mixture    distribution.    .. versionadded:: 0.18    *GaussianMixture*.    Read more in the :ref:`User Guide <gmm>`.    Parameters    ----------    n_components : int, defaults to 1.        The number of mixture components.    covariance_type : {'full', 'tied', 'diag', 'spherical'},            defaults to 'full'.        String describing the type of covariance parameters to use.        Must be one of::            'full' (each component has its own general covariance matrix),            'tied' (all components share the same general covariance matrix),            'diag' (each component has its own diagonal covariance matrix),            'spherical' (each component has its own single variance).    tol : float, defaults to 1e-3.        The convergence threshold. EM iterations will stop when the        lower bound average gain is below this threshold.    reg_covar : float, defaults to 0.        Non-negative regularization added to the diagonal of covariance.        Allows to assure that the covariance matrices are all positive.    max_iter : int, defaults to 100.        The number of EM iterations to perform.    n_init : int, defaults to 1.        The number of initializations to perform. The best results are kept.    init_params : {'kmeans', 'random'}, defaults to 'kmeans'.        The method used to initialize the weights, the means and the        precisions.        Must be one of::            'kmeans' : responsibilities are initialized using kmeans.            'random' : responsibilities are initialized randomly.    weights_init : array-like, shape (n_components, ), optional        The user-provided initial weights, defaults to None.        If it None, weights are initialized using the `init_params` method.    means_init: array-like, shape (n_components, n_features), optional        The user-provided initial means, defaults to None,        If it None, means are initialized using the `init_params` method.    precisions_init: array-like, optional.        The user-provided initial precisions (inverse of the covariance        matrices), defaults to None.        If it None, precisions are initialized using the 'init_params' method.        The shape depends on 'covariance_type'::            (n_components,)                        if 'spherical',            (n_features, n_features)               if 'tied',            (n_components, n_features)             if 'diag',            (n_components, n_features, n_features) if 'full'    random_state : RandomState or an int seed, defaults to None.        A random number generator instance.    warm_start : bool, default to False.        If 'warm_start' is True, the solution of the last fitting is used as        initialization for the next call of fit(). This can speed up        convergence when fit is called several time on similar problems.    verbose : int, default to 0.        Enable verbose output. If 1 then it prints the current        initialization and each iteration step. If greater than 1 then        it prints also the log probability and the time needed        for each step.    verbose_interval : int, default to 10.        Number of iteration done before the next print.    Attributes    ----------    weights_ : array-like, shape (n_components,)        The weights of each mixture components.    means_ : array-like, shape (n_components, n_features)        The mean of each mixture component.    covariances_ : array-like        The covariance of each mixture component.        The shape depends on `covariance_type`::            (n_components,)                        if 'spherical',            (n_features, n_features)               if 'tied',            (n_components, n_features)             if 'diag',            (n_components, n_features, n_features) if 'full'    precisions_ : array-like        The precision matrices for each component in the mixture. A precision        matrix is the inverse of a covariance matrix. A covariance matrix is        symmetric positive definite so the mixture of Gaussian can be        equivalently parameterized by the precision matrices. Storing the        precision matrices instead of the covariance matrices makes it more        efficient to compute the log-likelihood of new samples at test time.        The shape depends on `covariance_type`::            (n_components,)                        if 'spherical',            (n_features, n_features)               if 'tied',            (n_components, n_features)             if 'diag',            (n_components, n_features, n_features) if 'full'    precisions_cholesky_ : array-like        The cholesky decomposition of the precision matrices of each mixture        component. A precision matrix is the inverse of a covariance matrix.        A covariance matrix is symmetric positive definite so the mixture of        Gaussian can be equivalently parameterized by the precision matrices.        Storing the precision matrices instead of the covariance matrices makes        it more efficient to compute the log-likelihood of new samples at test        time. The shape depends on `covariance_type`::            (n_components,)                        if 'spherical',            (n_features, n_features)               if 'tied',            (n_components, n_features)             if 'diag',            (n_components, n_features, n_features) if 'full'    converged_ : bool        True when convergence was reached in fit(), False otherwise.    n_iter_ : int        Number of step used by the best fit of EM to reach the convergence.    lower_bound_ : float        Log-likelihood of the best fit of EM.    See Also    --------    BayesianGaussianMixture : Gaussian mixture model fit with a variational        inference.    """    def __init__(self, n_components=1, covariance_type='full', tol=1e-3,                 reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans',                 weights_init=None, means_init=None, precisions_init=None,                 random_state=None, warm_start=False,                 verbose=0, verbose_interval=10):        super(GaussianMixture, self).__init__(            n_components=n_components, tol=tol, reg_covar=reg_covar,            max_iter=max_iter, n_init=n_init, init_params=init_params,            random_state=random_state, warm_start=warm_start,            verbose=verbose, verbose_interval=verbose_interval)        self.covariance_type = covariance_type        self.weights_init = weights_init        self.means_init = means_init        self.precisions_init = precisions_init    def _check_parameters(self, X):        """Check the Gaussian mixture parameters are well defined."""        _, n_features = X.shape        if self.covariance_type not in ['spherical', 'tied', 'diag', 'full']:            raise ValueError("Invalid value for 'covariance_type': %s "                             "'covariance_type' should be in "                             "['spherical', 'tied', 'diag', 'full']"                             % self.covariance_type)        if self.weights_init is not None:            self.weights_init = _check_weights(self.weights_init,                                               self.n_components)        if self.means_init is not None:            self.means_init = _check_means(self.means_init,                                           self.n_components, n_features)        if self.precisions_init is not None:            self.precisions_init = _check_precisions(self.precisions_init,                                                     self.covariance_type,                                                     self.n_components,                                                     n_features)    def _initialize(self, X, resp):        """Initialization of the Gaussian mixture parameters.        Parameters        ----------        X : array-like, shape (n_samples, n_features)        resp : array-like, shape (n_samples, n_components)        """        n_samples, _ = X.shape        weights, means, covariances = _estimate_gaussian_parameters(            X, resp, self.reg_covar, self.covariance_type)        weights /= n_samples        self.weights_ = (weights if self.weights_init is None                         else self.weights_init)        self.means_ = means if self.means_init is None else self.means_init        if self.precisions_init is None:            self.covariances_ = covariances            self.precisions_cholesky_ = _compute_precision_cholesky(                covariances, self.covariance_type)        elif self.covariance_type == 'full':            self.precisions_cholesky_ = np.array(                [linalg.cholesky(prec_init, lower=True)                 for prec_init in self.precisions_init])        elif self.covariance_type == 'tied':            self.precisions_cholesky_ = linalg.cholesky(self.precisions_init,                                                        lower=True)        else:            self.precisions_cholesky_ = self.precisions_init    def _m_step(self, X, log_resp):        """M step.        Parameters        ----------        X : array-like, shape (n_samples, n_features)        log_resp : array-like, shape (n_samples, n_components)            Logarithm of the posterior probabilities (or responsibilities) of            the point of each sample in X.        """        n_samples, _ = X.shape        self.weights_, self.means_, self.covariances_ = (            _estimate_gaussian_parameters(X, np.exp(log_resp), self.reg_covar,                                          self.covariance_type))        self.weights_ /= n_samples        self.precisions_cholesky_ = _compute_precision_cholesky(            self.covariances_, self.covariance_type)    def _estimate_log_prob(self, X):        return _estimate_log_gaussian_prob(            X, self.means_, self.precisions_cholesky_, self.covariance_type)    def _estimate_log_weights(self):        return np.log(self.weights_)    def _compute_lower_bound(self, _, log_prob_norm):        return log_prob_norm    def _check_is_fitted(self):        check_is_fitted(self, ['weights_', 'means_', 'precisions_cholesky_'])    def _get_parameters(self):        return (self.weights_, self.means_, self.covariances_,                self.precisions_cholesky_)    def _set_parameters(self, params):        (self.weights_, self.means_, self.covariances_,         self.precisions_cholesky_) = params        # Attributes computation        _, n_features = self.means_.shape        if self.covariance_type == 'full':            self.precisions_ = np.empty(self.precisions_cholesky_.shape)            for k, prec_chol in enumerate(self.precisions_cholesky_):                self.precisions_[k] = np.dot(prec_chol, prec_chol.T)        elif self.covariance_type == 'tied':            self.precisions_ = np.dot(self.precisions_cholesky_,                                      self.precisions_cholesky_.T)        else:            self.precisions_ = self.precisions_cholesky_ ** 2    def _n_parameters(self):        """Return the number of free parameters in the model."""        _, n_features = self.means_.shape        if self.covariance_type == 'full':            cov_params = self.n_components * n_features * (n_features + 1) / 2.        elif self.covariance_type == 'diag':            cov_params = self.n_components * n_features        elif self.covariance_type == 'tied':            cov_params = n_features * (n_features + 1) / 2.        elif self.covariance_type == 'spherical':            cov_params = self.n_components        mean_params = n_features * self.n_components        return int(cov_params + mean_params + self.n_components - 1)    def bic(self, X):        """Bayesian information criterion for the current model on the input X.        Parameters        ----------        X : array of shape (n_samples, n_dimensions)        Returns        -------        bic: float            The lower the better.        """        return (-2 * self.score(X) * X.shape[0] +                self._n_parameters() * np.log(X.shape[0]))    def aic(self, X):        """Akaike information criterion for the current model on the input X.        Parameters        ----------        X : array of shape (n_samples, n_dimensions)        Returns        -------        aic: float            The lower the better.        """        return -2 * self.score(X) * X.shape[0] + 2 * self._n_parameters()
通过源码的学习,了解了模块的编写和其被调用的原理!!



原创粉丝点击