redis-01

来源:互联网 发布:linux编译android源码 编辑:程序博客网 时间:2024/06/05 18:39

大白话

RDB与AOF对比


1、RDB和AOF两种持久化机制的介绍

RDB持久化机制,对redis中的数据执行周期性的持久化

AOF机制对每条写入命令作为日志,以append-only的模式写入一个日志文件中,在redis重启的时候,可以通过回放AOF日志中的写入指令来重新构建整个数据集

如果我们想要redis仅仅作为纯内存的缓存来用,那么可以禁止RDB和AOF所有的持久化机制

通过RDB或AOF,都可以将redis内存中的数据给持久化到磁盘上面来,然后可以将这些数据备份到别的地方去,比如说阿里云,云服务

如果redis挂了,服务器上的内存和磁盘上的数据都丢了,可以从云服务上拷贝回来之前的数据,放到指定的目录中,然后重新启动redis,redis就会自动根据持久化数据文件中的数据,去恢复内存中的数据,继续对外提供服务

如果同时使用RDB和AOF两种持久化机制,那么在redis重启的时候,会使用AOF来重新构建数据,因为AOF中的数据更加完整


2、RDB持久化机制的优点

(1)RDB会生成多个数据文件,每个数据文件都代表了某一个时刻中redis的数据,这种多个数据文件的方式,非常适合做冷备,可以将这种完整的数据文件发送到一些远程的安全存储上去,比如说Amazon的S3云服务上去,在国内可以是阿里云的ODPS分布式存储上,以预定好的备份策略来定期备份redis中的数据

RDB也可以做冷备,生成多个文件,每个文件都代表了某一个时刻的完整的数据快照
AOF也可以做冷备,只有一个文件,但是你可以,每隔一定时间,去copy一份这个文件出来

RDB做冷备,优势在哪儿呢?由redis去控制固定时长生成快照文件的事情,比较方便; AOF,还需要自己写一些脚本去做这个事情,各种定时
RDB数据做冷备,在最坏的情况下,提供数据恢复的时候,速度比AOF快

(2)RDB对redis对外提供的读写服务,影响非常小,可以让redis保持高性能,因为redis主进程只需要fork一个子进程,让子进程执行磁盘IO操作来进行RDB持久化即可

RDB,每次写,都是直接写redis内存,只是在一定的时候,才会将数据写入磁盘中
AOF,每次都是要写文件的,虽然可以快速写入os cache中,但是还是有一定的时间开销的,速度肯定比RDB略慢一些

(3)相对于AOF持久化机制来说,直接基于RDB数据文件来重启和恢复redis进程,更加快速

AOF,存放的指令日志,做数据恢复的时候,其实是要回放和执行所有的指令日志,来恢复出来内存中的所有数据的
RDB,就是一份数据文件,恢复的时候,直接加载到内存中即可

结合上述优点,RDB特别适合做冷备份,冷备


3、RDB持久化机制的缺点

(1)如果想要在redis故障时,尽可能少的丢失数据,那么RDB没有AOF好。一般来说,RDB数据快照文件,都是每隔5分钟,或者更长时间生成一次,这个时候就得接受一旦redis进程宕机,那么会丢失最近5分钟的数据

这个问题,也是rdb最大的缺点,就是不适合做第一优先的恢复方案,如果你依赖RDB做第一优先恢复方案,会导致数据丢失的比较多

(2)RDB每次在fork子进程来执行RDB快照数据文件生成的时候,如果数据文件特别大,可能会导致对客户端提供的服务暂停数毫秒,或者甚至数秒

一般不要让RDB的间隔太长,否则每次生成的RDB文件太大了,对redis本身的性能可能会有影响的


4、AOF持久化机制的优点

(1)AOF可以更好的保护数据不丢失,一般AOF会每隔1秒,通过一个后台线程执行一次fsync操作,最多丢失1秒钟的数据

每隔1秒,就执行一次fsync操作,保证os cache中的数据写入磁盘中

redis进程挂了,最多丢掉1秒钟的数据

(2)AOF日志文件以append-only模式写入,所以没有任何磁盘寻址的开销,写入性能非常高,而且文件不容易破损,即使文件尾部破损,也很容易修复

(3)AOF日志文件即使过大的时候,出现后台重写操作,也不会影响客户端的读写。因为在rewrite log的时候,会对其中的指导进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的merge后的日志文件ready的时候,再交换新老日志文件即可。

(4)AOF日志文件的命令通过非常可读的方式进行记录,这个特性非常适合做灾难性的误删除的紧急恢复。比如某人不小心用flushall命令清空了所有数据,只要这个时候后台rewrite还没有发生,那么就可以立即拷贝AOF文件,将最后一条flushall命令给删了,然后再将该AOF文件放回去,就可以通过恢复机制,自动恢复所有数据


5、AOF持久化机制的缺点

(1)对于同一份数据来说,AOF日志文件通常比RDB数据快照文件更大

(2)AOF开启后,支持的写QPS会比RDB支持的写QPS低,因为AOF一般会配置成每秒fsync一次日志文件,当然,每秒一次fsync,性能也还是很高的

如果你要保证一条数据都不丢,也是可以的,AOF的fsync设置成没写入一条数据,fsync一次,那就完蛋了,redis的QPS大降

(3)以前AOF发生过bug,就是通过AOF记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似AOF这种较为复杂的基于命令日志/merge/回放的方式,比基于RDB每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有bug。不过AOF就是为了避免rewrite过程导致的bug,因此每次rewrite并不是基于旧的指令日志进行merge的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多。

(4)唯一的比较大的缺点,其实就是做数据恢复的时候,会比较慢,还有做冷备,定期的备份,不太方便,可能要自己手写复杂的脚本去做,做冷备不太合适


6、RDB和AOF到底该如何选择

(1)不要仅仅使用RDB,因为那样会导致你丢失很多数据

(2)也不要仅仅使用AOF,因为那样有两个问题,第一,你通过AOF做冷备,没有RDB做冷备,来的恢复速度更快; 第二,RDB每次简单粗暴生成数据快照,更加健壮,可以避免AOF这种复杂的备份和恢复机制的bug

(3)综合使用AOF和RDB两种持久化机制,用AOF来保证数据不丢失,作为数据恢复的第一选择; 用RDB来做不同程度的冷备,在AOF文件都丢失或损坏不可用的时候,还可以使用RDB来进行快速的数据恢复

RDB 测试

1、如何配置RDB持久化机制
2、RDB持久化机制的工作流程
3、基于RDB持久化机制的数据恢复实验


1、如何配置RDB持久化机制

redis.conf文件,也就是/etc/redis/6379.conf,去配置持久化

save 60 1000

每隔60s,如果有超过1000个key发生了变更,那么就生成一个新的dump.rdb文件,就是当前redis内存中完整的数据快照,这个操作也被称之为snapshotting,快照

也可以手动调用save或者bgsave命令,同步或异步执行rdb快照生成

save可以设置多个,就是多个snapshotting检查点,每到一个检查点,就会去check一下,是否有指定的key数量发生了变更,如果有,就生成一个新的dump.rdb文件


2、RDB持久化机制的工作流程

(1)redis根据配置自己尝试去生成rdb快照文件
(2)fork一个子进程出来
(3)子进程尝试将数据dump到临时的rdb快照文件中
(4)完成rdb快照文件的生成之后,就替换之前的旧的快照文件

dump.rdb,每次生成一个新的快照,都会覆盖之前的老快照


3、基于RDB持久化机制的数据恢复实验

(1)在redis中保存几条数据,立即停掉redis进程,然后重启redis,看看刚才插入的数据还在不在

数据还在,为什么?

带出来一个知识点,通过redis-cli SHUTDOWN这种方式去停掉redis,其实是一种安全退出的模式,redis在退出的时候会将内存中的数据立即生成一份完整的rdb快照

/var/redis/6379/dump.rdb

(2)在redis中再保存几条新的数据,用kill -9粗暴杀死redis进程,模拟redis故障异常退出,导致内存数据丢失的场景

这次就发现,redis进程异常被杀掉,数据没有进dump文件,几条最新的数据就丢失了

(2)手动设置一个save检查点,save 5 1
(3)写入几条数据,等待5秒钟,会发现自动进行了一次dump rdb快照,在dump.rdb中发现了数据
(4)异常停掉redis进程,再重新启动redis,看刚才插入的数据还在

rdb的手动配置检查点,以及rdb快照的生成,包括数据的丢失和恢复,全都演示过了

AOF测试

1、AOF持久化的配置
2、AOF持久化的数据恢复实验
3、AOF rewrite
4、AOF破损文件的修复
5、AOF和RDB同时工作


1、AOF持久化的配置

AOF持久化,默认是关闭的,默认是打开RDB持久化

appendonly yes,可以打开AOF持久化机制,在生产环境里面,一般来说AOF都是要打开的,除非你说随便丢个几分钟的数据也无所谓

打开AOF持久化机制之后,redis每次接收到一条写命令,就会写入日志文件中,当然是先写入os cache的,然后每隔一定时间再fsync一下

而且即使AOF和RDB都开启了,redis重启的时候,也是优先通过AOF进行数据恢复的,因为aof数据比较完整

可以配置AOF的fsync策略,有三种策略可以选择,一种是每次写入一条数据就执行一次fsync; 一种是每隔一秒执行一次fsync; 一种是不主动执行fsync

always: 每次写入一条数据,立即将这个数据对应的写日志fsync到磁盘上去,性能非常非常差,吞吐量很低; 确保说redis里的数据一条都不丢,那就只能这样了

mysql -> 内存策略,大量磁盘,QPS到多少,一两k。QPS,每秒钟的请求数量
redis -> 内存,磁盘持久化,QPS到多少,单机,一般来说,上万QPS没问题

everysec: 每秒将os cache中的数据fsync到磁盘,这个最常用的,生产环境一般都这么配置,性能很高,QPS还是可以上万的

no: 仅仅redis负责将数据写入os cache就撒手不管了,然后后面os自己会时不时有自己的策略将数据刷入磁盘,不可控了


2、AOF持久化的数据恢复实验

(1)先仅仅打开RDB,写入一些数据,然后kill -9杀掉redis进程,接着重启redis,发现数据没了,因为RDB快照还没生成
(2)打开AOF的开关,启用AOF持久化
(3)写入一些数据,观察AOF文件中的日志内容

其实你在appendonly.aof文件中,可以看到刚写的日志,它们其实就是先写入os cache的,然后1秒后才fsync到磁盘中,只有fsync到磁盘中了,才是安全的,要不然光是在os cache中,机器只要重启,就什么都没了

(4)kill -9杀掉redis进程,重新启动redis进程,发现数据被恢复回来了,就是从AOF文件中恢复回来的

redis进程启动的时候,直接就会从appendonly.aof中加载所有的日志,把内存中的数据恢复回来


3、AOF rewrite

redis中的数据其实有限的,很多数据可能会自动过期,可能会被用户删除,可能会被redis用缓存清除的算法清理掉

redis中的数据会不断淘汰掉旧的,就一部分常用的数据会被自动保留在redis内存中

所以可能很多之前的已经被清理掉的数据,对应的写日志还停留在AOF中,AOF日志文件就一个,会不断的膨胀,到很大很大

所以AOF会自动在后台每隔一定时间做rewrite操作,比如日志里已经存放了针对100w数据的写日志了; redis内存只剩下10万; 基于内存中当前的10万数据构建一套最新的日志,到AOF中; 覆盖之前的老日志; 确保AOF日志文件不会过大,保持跟redis内存数据量一致

redis 2.4之前,还需要手动,开发一些脚本,crontab,通过BGREWRITEAOF命令去执行AOF rewrite,但是redis 2.4之后,会自动进行rewrite操作

在redis.conf中,可以配置rewrite策略

auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

比如说上一次AOF rewrite之后,是128mb

然后就会接着128mb继续写AOF的日志,如果发现增长的比例,超过了之前的100%,256mb,就可能会去触发一次rewrite

但是此时还要去跟min-size,64mb去比较,256mb > 64mb,才会去触发rewrite

(1)redis fork一个子进程
(2)子进程基于当前内存中的数据,构建日志,开始往一个新的临时的AOF文件中写入日志
(3)redis主进程,接收到client新的写操作之后,在内存中写入日志,同时新的日志也继续写入旧的AOF文件
(4)子进程写完新的日志文件之后,redis主进程将内存中的新日志再次追加到新的AOF文件中
(5)用新的日志文件替换掉旧的日志文件


4、AOF破损文件的修复

如果redis在append数据到AOF文件时,机器宕机了,可能会导致AOF文件破损

用redis-check-aof –fix命令来修复破损的AOF文件


5、AOF和RDB同时工作

(1)如果RDB在执行snapshotting操作,那么redis不会执行AOF rewrite; 如果redis再执行AOF rewrite,那么就不会执行RDB snapshotting
(2)如果RDB在执行snapshotting,此时用户执行BGREWRITEAOF命令,那么等RDB快照生成之后,才会去执行AOF rewrite
(3)同时有RDB snapshot文件和AOF日志文件,那么redis重启的时候,会优先使用AOF进行数据恢复,因为其中的日志更完整


6、最后一个小实验,让大家对redis的数据恢复有更加深刻的体会

(1)在有rdb的dump和aof的appendonly的同时,rdb里也有部分数据,aof里也有部分数据,这个时候其实会发现,rdb的数据不会恢复到内存中
(2)我们模拟让aof破损,然后fix,有一条数据会被fix删除
(3)再次用fix得aof文件去重启redis,发现数据只剩下一条了

数据恢复完全是依赖于底层的磁盘的持久化的,主要rdb和aof上都没有数据,那就没了

备份恢复

到这里为止,其实还是停留在简单学习知识的程度,学会了redis的持久化的原理和操作,但是在企业中,持久化到底是怎么去用得呢?

企业级的数据备份和各种灾难下的数据恢复,是怎么做得呢?

1、企业级的持久化的配置策略

在企业中,RDB的生成策略,用默认的也差不多

save 60 10000:如果你希望尽可能确保说,RDB最多丢1分钟的数据,那么尽量就是每隔1分钟都生成一个快照,低峰期,数据量很少,也没必要

10000->生成RDB,1000->RDB,这个根据你自己的应用和业务的数据量,你自己去决定

AOF一定要打开,fsync,everysec

auto-aof-rewrite-percentage 100: 就是当前AOF大小膨胀到超过上次100%,上次的两倍
auto-aof-rewrite-min-size 64mb: 根据你的数据量来定,16mb,32mb

2、企业级的数据备份方案

RDB非常适合做冷备,每次生成之后,就不会再有修改了

数据备份方案

(1)写crontab定时调度脚本去做数据备份
(2)每小时都copy一份rdb的备份,到一个目录中去,仅仅保留最近48小时的备份
(3)每天都保留一份当日的rdb的备份,到一个目录中去,仅仅保留最近1个月的备份
(4)每次copy备份的时候,都把太旧的备份给删了
(5)每天晚上将当前服务器上所有的数据备份,发送一份到远程的云服务上去

/usr/local/redis

每小时copy一次备份,删除48小时前的数据

crontab -e0 * * * * sh /usr/local/redis/copy/redis_rdb_copy_hourly.sh

redis_rdb_copy_hourly.sh

#!/bin/sh cur_date=`date +%Y%m%d%k`rm -rf /usr/local/redis/snapshotting/$cur_datemkdir /usr/local/redis/snapshotting/$cur_datecp /var/redis/6379/dump.rdb /usr/local/redis/snapshotting/$cur_datedel_date=`date -d -48hour +%Y%m%d%k`rm -rf /usr/local/redis/snapshotting/$del_date

每天copy一次备份

crontab -e0 0 * * * sh /usr/local/redis/copy/redis_rdb_copy_daily.sh

redis_rdb_copy_daily.sh

#!/bin/sh cur_date=`date +%Y%m%d`rm -rf /usr/local/redis/snapshotting/$cur_datemkdir /usr/local/redis/snapshotting/$cur_datecp /var/redis/6379/dump.rdb /usr/local/redis/snapshotting/$cur_datedel_date=`date -d -1month +%Y%m%d`rm -rf /usr/local/redis/snapshotting/$del_date

每天一次将所有数据上传一次到远程的云服务器上去

3、数据恢复方案

(1)如果是redis进程挂掉,那么重启redis进程即可,直接基于AOF日志文件恢复数据

不演示了,在AOF数据恢复那一块,演示了,fsync everysec,最多就丢一秒的数

(2)如果是redis进程所在机器挂掉,那么重启机器后,尝试重启redis进程,尝试直接基于AOF日志文件进行数据恢复

AOF没有破损,也是可以直接基于AOF恢复的

AOF append-only,顺序写入,如果AOF文件破损,那么用redis-check-aof fix

(3)如果redis当前最新的AOF和RDB文件出现了丢失/损坏,那么可以尝试基于该机器上当前的某个最新的RDB数据副本进行数据恢复

当前最新的AOF和RDB文件都出现了丢失/损坏到无法恢复,一般不是机器的故障,人为

大数据系统,hadoop,有人不小心就把hadoop中存储的大量的数据文件对应的目录,rm -rf一下,我朋友的一个小公司,运维不太靠谱,权限也弄的不太好

/var/redis/6379下的文件给删除了

找到RDB最新的一份备份,小时级的备份可以了,小时级的肯定是最新的,copy到redis里面去,就可以恢复到某一个小时的数据

容灾演练

appendonly.aof + dump.rdb,优先用appendonly.aof去恢复数据,但是我们发现redis自动生成的appendonly.aof是没有数据的

然后我们自己的dump.rdb是有数据的,但是明显没用我们的数据

redis启动的时候,自动重新基于内存的数据,生成了一份最新的rdb快照,直接用空的数据,覆盖掉了我们有数据的,拷贝过去的那份dump.rdb

你停止redis之后,其实应该先删除appendonly.aof,然后将我们的dump.rdb拷贝过去,然后再重启redis

很简单,就是虽然你删除了appendonly.aof,但是因为打开了aof持久化,redis就一定会优先基于aof去恢复,即使文件不在,那就创建一个新的空的aof文件

停止redis,暂时在配置中关闭aof,然后拷贝一份rdb过来,再重启redis,数据能不能恢复过来,可以恢复过来

脑子一热,再关掉redis,手动修改配置文件,打开aof,再重启redis,数据又没了,空的aof文件,所有数据又没了

在数据安全丢失的情况下,基于rdb冷备,如何完美的恢复数据,同时还保持aof和rdb的双开

停止redis,关闭aof,拷贝rdb备份,重启redis,确认数据恢复,直接在命令行热修改redis配置,打开aof,这个redis就会将内存中的数据对应的日志,写入aof文件中

此时aof和rdb两份数据文件的数据就同步了

redis config set热修改配置参数,可能配置文件中的实际的参数没有被持久化的修改,再次停止redis,手动修改配置文件,打开aof的命令,再次重启redis

(4)如果当前机器上的所有RDB文件全部损坏,那么从远程的云服务上拉取最新的RDB快照回来恢复数据

(5)如果是发现有重大的数据错误,比如某个小时上线的程序一下子将数据全部污染了,数据全错了,那么可以选择某个更早的时间点,对数据进行恢复

举个例子,12点上线了代码,发现代码有bug,导致代码生成的所有的缓存数据,写入redis,全部错了

找到一份11点的rdb的冷备,然后按照上面的步骤,去恢复到11点的数据,不就可以了吗

redis replication

(1)redis采用异步方式复制数据到slave节点,不过redis 2.8开始,slave node会周期性地确认自己每次复制的数据量
(2)一个master node是可以配置多个slave node的
(3)slave node也可以连接其他的slave node
(4)slave node做复制的时候,是不会block master node的正常工作的
(5)slave node在做复制的时候,也不会block对自己的查询操作,它会用旧的数据集来提供服务;
但是复制完成的时候,需要删除旧数据集,加载新数据集,这个时候就会暂停对外服务了
(6)slave node主要用来进行横向扩容,做读写分离,扩容的slave node可以提高读的吞吐量

slave,高可用性,有很大的关系


master持久化对于主从架构的安全保障的意义

如果采用了主从架构,那么建议必须开启master node的持久化!

不建议用slave node作为master node的数据热备,因为那样的话,如果你关掉master的持久化,可能在master宕机重启的时候数据是空的,然后可能一经过复制,salve node数据也丢了

master -> RDB和AOF都关闭了 -> 全部在内存中

master宕机,重启,是没有本地数据可以恢复的,然后就会直接认为自己IDE数据是空的

master就会将空的数据集同步到slave上去,所有slave的数据全部清空

100%的数据丢失

master节点,必须要使用持久化机制

第二个,master的各种备份方案,要不要做,万一说本地的所有文件丢失了; 从备份中挑选一份rdb去恢复master; 这样才能确保master启动的时候,是有数据的

即使采用了后续讲解的高可用机制,slave node可以自动接管master node,但是也可能sentinal还没有检测到master failure,master node就自动重启了,还是可能导致上面的所有slave node数据清空故障

主从架构的核心原理

当启动一个slave node的时候,它会发送一个PSYNC命令给master node

如果这是slave node重新连接master node,那么master node仅仅会复制给slave部分缺少的数据;
否则如果是slave node第一次连接master node,那么会触发一次full resynchronization

开始full resynchronization的时候,master会启动一个后台线程,开始生成一份RDB快照文件,
同时还会将从客户端收到的所有写命令缓存在内存中。
RDB文件生成完毕之后,master会将这个RDB发送给slave,slave会先写入本地磁盘,
然后再从本地磁盘加载到内存中。然后master会将内存中缓存的写命令发送给slave,slave也会同步这些数据。

slave node如果跟master node有网络故障,断开了连接,会自动重连。master如果发现有多个slave node都来重新连接,
仅仅会启动一个rdb save操作,用一份数据服务所有slave node。

主从复制的断点续传

从redis 2.8开始,就支持主从复制的断点续传,如果主从复制过程中,网络连接断掉了,那么可以接着上次复制的地方,继续复制下去,而不是从头开始复制一份

master node会在内存中创建一个backlog,master和slave都会保存一个replica offset还有一个master id,offset就是保存在backlog中的。
如果master和slave网络连接断掉了,slave会让master从上次的replica offset开始继续复制

但是如果没有找到对应的offset,那么就会执行一次resynchronization

无磁盘化复制

master在内存中直接创建rdb,然后发送给slave,不会在自己本地落地磁盘了

repl-diskless-sync
repl-diskless-sync-delay,等待一定时长再开始复制,因为要等更多slave重新连接过来

过期key处理

slave不会过期key,只会等待master过期key。如果master过期了一个key,或者通过LRU淘汰了一个key,那么会模拟一条del命令发送给slave。

主从复制深入

复制的完整流程

(1)slave node启动,仅仅保存master node的信息,包括master node的host和ip,但是复制流程没开始

master host和ip是从哪儿来的,redis.conf里面的slaveof配置的

(2)slave node内部有个定时任务,每秒检查是否有新的master node要连接和复制,如果发现,就跟master node建立socket网络连接
(3)slave node发送ping命令给master node
(4)口令认证,如果master设置了requirepass,那么salve node必须发送masterauth的口令过去进行认证
(5)master node第一次执行全量复制,将所有数据发给slave node
(6)master node后续持续将写命令,异步复制给slave node

数据同步相关的核心机制

指的就是第一次slave连接msater的时候,执行的全量复制,那个过程里面你的一些细节的机制

(1)master和slave都会维护一个offset

master会在自身不断累加offset,slave也会在自身不断累加offset
slave每秒都会上报自己的offset给master,同时master也会保存每个slave的offset

这个倒不是说特定就用在全量复制的,主要是master和slave都要知道各自的数据的offset,才能知道互相之间的数据不一致的情况

(2)backlog

master node有一个backlog,默认是1MB大小
master node给slave node复制数据时,也会将数据在backlog中同步写一份
backlog主要是用来做全量复制中断候的增量复制的

(3)master run id

info server,可以看到master run id
如果根据host+ip定位master node,是不靠谱的,如果master node重启或者数据出现了变化,那么slave node应该根据不同的run id区分,run id不同就做全量复制
如果需要不更改run id重启redis,可以使用redis-cli debug reload命令

(4)psync

从节点使用psync从master node进行复制,psync runid offset
master node会根据自身的情况返回响应信息,可能是FULLRESYNC runid offset触发全量复制,可能是CONTINUE触发增量复制

全量复制

(1)master执行bgsave,在本地生成一份rdb快照文件
(2)master node将rdb快照文件发送给salve node,如果rdb复制时间超过60秒(repl-timeout),那么slave node就会认为复制失败,可以适当调节大这个参数
(3)对于千兆网卡的机器,一般每秒传输100MB,6G文件,很可能超过60s
(4)master node在生成rdb时,会将所有新的写命令缓存在内存中,在salve node保存了rdb之后,再将新的写命令复制给salve node
(5)client-output-buffer-limit slave 256MB 64MB 60,如果在复制期间,内存缓冲区持续消耗超过64MB,或者一次性超过256MB,那么停止复制,复制失败
(6)slave node接收到rdb之后,清空自己的旧数据,然后重新加载rdb到自己的内存中,同时基于旧的数据版本对外提供服务
(7)如果slave node开启了AOF,那么会立即执行BGREWRITEAOF,重写AOF

rdb生成、rdb通过网络拷贝、slave旧数据的清理、slave aof rewrite,很耗费时间

如果复制的数据量在4G~6G之间,那么很可能全量复制时间消耗到1分半到2分钟

增量复制

(1)如果全量复制过程中,master-slave网络连接断掉,那么salve重新连接master时,会触发增量复制
(2)master直接从自己的backlog中获取部分丢失的数据,发送给slave node,默认backlog就是1MB
(3)msater就是根据slave发送的psync中的offset来从backlog中获取数据的

heartbeat

主从节点互相都会发送heartbeat信息

master默认每隔10秒发送一次heartbeat,salve node每隔1秒发送一个heartbeat

异步复制

master每次接收到写命令之后,现在内部写入数据,然后异步发送给slave node

原创粉丝点击