caffe之python接口实战 :net_surgery 官方教程源码解析

来源:互联网 发布:听书神器软件 编辑:程序博客网 时间:2024/05/16 13:07

本文是官方文档的源码解析笔记系列之一

注1:本文内容属于caffe_root/example/下的ipynb文件的源码解析,旨在通过源码注释,加速初学者的学习进程。
注2:以下解析中,未对各部分英文注释做翻译,旨在告诫初学者,应该去适应原汁原味的英文教程阅读,这样有助于提升自己阅读技术文献的能力,也是高级程序员的必备素养。
注3:建议大家在jupyter nootebook环境下结合源码注释,运行程序。

Net Surgery

Caffe networks can be transformed to your particular needs by editing the model parameters. The data, diffs, and parameters of a net are all exposed in pycaffe.

Roll up your sleeves for net surgery with pycaffe!

import numpy as npimport matplotlib.pyplot as plt%matplotlib inline# Make sure that caffe is on the python path:caffe_root = '../'  # this file is expected to be in {caffe_root}/examplesimport syssys.path.insert(0, caffe_root + 'python')import caffe# configure plottingplt.rcParams['figure.figsize'] = (10, 10)plt.rcParams['image.interpolation'] = 'nearest'plt.rcParams['image.cmap'] = 'gray'

Designer Filters

To show how to load, manipulate, and save parameters we’ll design our own filters into a simple network that’s only a single convolution layer. This net has two blobs, data for the input and conv for the convolution output and one parameter conv for the convolution filter weights and biases.

# Load the net, list its data and params, and filter an example image.caffe.set_mode_cpu()net = caffe.Net('net_surgery/conv.prototxt', caffe.TEST) #没有装入训练好的权重文件,装入的卷积层的滤波器的卷积核数为3,即numout=3print("blobs {}\nparams {}".format(net.blobs.keys(), net.params.keys()))# load image and prepare as a single input batch for Caffeim = np.array(caffe.io.load_image('images/cat_gray.jpg', color=False)).squeeze() #读入的是RGB,HWC,uint形式的图像,在此为一个通道的图像,并移除长度为1的轴plt.title("original image")plt.imshow(im)plt.axis('off')im_input = im[np.newaxis, np.newaxis, :, :]net.blobs['data'].reshape(*im_input.shape) #reshap Blobs维度为四维net.blobs['data'].data[...] = im_input

The convolution weights are initialized from Gaussian noise while the biases are initialized to zero. These random filters give output somewhat like edge detections.

# helper show filter outputsdef show_filters(net):    net.forward() #使网络参数初始化,装入图像,并被高斯初始化的滤波器处理,装入的卷积层的滤波器的卷积核数为3,即numout=3    plt.figure()    filt_min, filt_max = net.blobs['conv'].data.min(), net.blobs['conv'].data.max(),    for i in range(3): #装入的卷积层的滤波器的卷积核数为3,即numout=3,即卷积后有三通道的图像输出        plt.subplot(1,4,i+2)        plt.title("filter #{} output".format(i))        #cmap设置为了gray,因为就是一个通道,一个通道的图像显示,所以不用考虑轴的转置和通道的后置        plt.imshow(net.blobs['conv'].data[0, i], vmin=filt_min, vmax=filt_max) #batchsize的第0张图像,第i通道图像卷积后的输出,vmin,vmax是为了colormap的归一化        plt.tight_layout() #防止各子图重叠,使之紧凑        plt.axis('off')# filter the image with initial show_filters(net)

Raising the bias of a filter will correspondingly raise its output:

# pick first filter outputconv0 = net.blobs['conv'].data[0, 0] #batchsize的第0个图像,因为通道就一个,所以后面的0代表第0通道print("pre-surgery output mean {:.2f}".format(conv0.mean()))# set first filter bias to 1net.params['conv'][1].data[0] = 1. #第一个1代表时偏置参数,为0时是权重参数。0代表第1个滤波器偏置设为1net.forward()print("post-surgery output mean {:.2f}".format(conv0.mean()))

Altering the filter weights is more exciting since we can assign any kernel like Gaussian blur, the Sobel operator for edges, and so on. The following surgery turns the 0th filter into a Gaussian blur and the 1st and 2nd filters into the horizontal and vertical gradient parts of the Sobel operator.

See how the 0th output is blurred, the 1st picks up horizontal edges, and the 2nd picks up vertical edges.

ksize = net.params['conv'][0].data.shape[2:] #shape0为几个numout即几个filters,shape1为输入的blobs的通道数,shape2及之后为filters的形状大小# make Gaussian blursigma = 1.y, x = np.mgrid[-ksize[0]//2 + 1:ksize[0]//2 + 1, -ksize[1]//2 + 1:ksize[1]//2 + 1]g = np.exp(-((x**2 + y**2)/(2.0*sigma**2)))gaussian = (g / g.sum()).astype(np.float32) #归一化后的二维标准高斯模板矩阵,sigma=1即标准差差为1,net.params['conv'][0].data[0] = gaussian# make Sobel operator for edge detectionnet.params['conv'][0].data[1:] = 0.sobel = np.array((-1, -2, -1, 0, 0, 0, 1, 2, 1), dtype=np.float32).reshape((3,3))net.params['conv'][0].data[1, 0, 1:-1, 1:-1] = sobel  # horizontal,其中的data[1, 0, 1:-1, 1:-1]的0代表输入数据为单通道的图像,取5*5核的中间区域附上sobel模板net.params['conv'][0].data[2, 0, 1:-1, 1:-1] = sobel.T  # verticalshow_filters(net)

With net surgery, parameters can be transplanted across nets, regularized by custom per-parameter operations, and transformed according to your schemes.

Casting a Classifier into a Fully Convolutional Network

将caffenet的全连接层都改为卷积层,得到全卷积层的卷积网络caffenet,这样可以得到属于某一分类的置信度响应map!!

Let’s take the standard Caffe Reference ImageNet model “CaffeNet” and transform it into a fully convolutional net for efficient, dense inference on large inputs. This model generates a classification map that covers a given input size instead of a single classification. In particular a 8 × 8 classification map on a 451 × 451 input gives 64x the output in only 3x the time. The computation exploits a natural efficiency of convolutional network (convnet) structure by amortizing the computation of overlapping receptive fields.

To do so we translate the InnerProduct matrix multiplication layers of CaffeNet into Convolutional layers. This is the only change: the other layer types are agnostic to spatial size. Convolution is translation-invariant, activations are elementwise operations, and so on. The fc6 inner product when carried out as convolution by fc6-conv turns into a 6 × 6 filter with stride 1 on pool5. Back in image space this gives a classification for each 227 × 227 box with stride 32 in pixels. Remember the equation for output map / receptive field size, output = (input - kernel_size) / stride + 1, and work out the indexing details for a clear understanding.

!diff net_surgery/bvlc_caffenet_full_conv.prototxt ../models/bvlc_reference_caffenet/deploy.prototxt #data层为 dim: 1 dim: 3 dim: 451 dim: 451 

The only differences needed in the architecture are to change the fully connected classifier inner product layers into convolutional layers with the right filter size – 6 x 6, since the reference model classifiers take the 36 elements of pool5 as input – and stride 1 for dense classification. Note that the layers are renamed so that Caffe does not try to blindly load the old parameters when it maps layer names to the pretrained model.

# Load the original network and extract the fully connected layers' parameters.#含有全连接层的caffenet原模型,net = caffe.Net('../models/bvlc_reference_caffenet/deploy.prototxt',                 '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel',                 caffe.TEST)params = ['fc6', 'fc7', 'fc8']# fc_params = {name: (weights, biases)}fc_params = {pr: (net.params[pr][0].data, net.params[pr][1].data) for pr in params}for fc in params:    print '{} weights are {} dimensional and biases are {} dimensional'.format(fc, fc_params[fc][0].shape, fc_params[fc][1].shape)

Consider the shapes of the inner product parameters. The weight dimensions are the output and input sizes while the bias dimension is the output size.

# Load the fully convolutional network to transplant the parameters.#将caffenet的全连接层都改为卷积层,得到全卷积层的卷积网络caffenet,data层为 dim: 1 dim: 3 dim: 451 dim: 451,output = (input - kernel_size) / stride + 1,net_full_conv = caffe.Net('net_surgery/bvlc_caffenet_full_conv.prototxt',                           '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel',                          caffe.TEST)params_full_conv = ['fc6-conv', 'fc7-conv', 'fc8-conv']# conv_params = {name: (weights, biases)}conv_params = {pr: (net_full_conv.params[pr][0].data, net_full_conv.params[pr][1].data) for pr in params_full_conv}for conv in params_full_conv:    print '{} weights are {} dimensional and biases are {} dimensional'.format(conv, conv_params[conv][0].shape, conv_params[conv][1].shape)

The convolution weights are arranged in output × input × height × width dimensions. To map the inner product weights to convolution filters, we could roll the flat inner product vectors into channel × height × width filter matrices, but actually these are identical in memory (as row major arrays) so we can assign them directly.

The biases are identical to those of the inner product.

Let’s transplant!

for pr, pr_conv in zip(params, params_full_conv):    conv_params[pr_conv][0].flat = fc_params[pr][0].flat  # flat unrolls the arrays展平赋值不改变内存中形式,把全连接的caffenet的权重参数复制给全卷积caffenet权重变量    conv_params[pr_conv][1][...] = fc_params[pr][1]

Next, save the new model weights.

net_full_conv.save('net_surgery/bvlc_caffenet_full_conv.caffemodel')

To conclude, let’s make a classification map from the example cat image and visualize the confidence of “tiger cat” as a probability heatmap. This gives an 8-by-8 prediction on overlapping regions of the 451 × 451 input.

import numpy as npimport matplotlib.pyplot as plt%matplotlib inline# load input and configure preprocessingim = caffe.io.load_image('images/cat.jpg')transformer = caffe.io.Transformer({'data': net_full_conv.blobs['data'].data.shape}) #转变im到net_full_conv网络sh适用的数据形式,data层为 dim: 1 dim: 3 dim: 451 dim: 451transformer.set_mean('data', np.load('../python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1))transformer.set_transpose('data', (2,0,1)) #HWC到CHWtransformer.set_channel_swap('data', (2,1,0)) #RGB到BGRtransformer.set_raw_scale('data', 255.0) #尺度化到0-255# make classification map by forward and print prediction indices at each location#将caffenet的全连接层都改为卷积层,得到全卷积层的卷积网络caffenet,data层为 dim: 1 dim: 3 dim: 451 dim: 451,output = (input - kernel_size) / stride + 1,out = net_full_conv.forward_all(data=np.asarray([transformer.preprocess('data', im)])) #data为1*3*H*W形式print out['prob'][0].argmax(axis=0) #softmax输出为batchsize*1000*8*8,0代表batchsize的第0张图片,axis=0表示8*8的map中个位置的值都是1000通道的概率的最大值# show net input and confidence map (probability of the top prediction at each location)plt.subplot(1, 2, 1)plt.imshow(transformer.deprocess('data', net_full_conv.blobs['data'].data[0])) #输出data层的第0张原图plt.subplot(1, 2, 2)plt.imshow(out['prob'][0,281]) #第0张图片的第281类的响应8*8map如下:

The classifications include various cats – 282 = tiger cat, 281 = tabby, 283 = persian – and foxes and other mammals.

In this way the fully connected layers can be extracted as dense features across an image (see net_full_conv.blobs['fc6'].data for instance), which is perhaps more useful than the classification map itself.

Note that this model isn’t totally appropriate for sliding-window detection since it was trained for whole-image classification. Nevertheless it can work just fine. Sliding-window training and finetuning can be done by defining a sliding-window ground truth and loss such that a loss map is made for every location and solving as usual. (This is an exercise for the reader.)

A thank you to Rowland Depp for first suggesting this trick.

阅读全文
0 0