Ceph 学习——OSD读写流程与源码分析(一)

来源:互联网 发布:网络加速器永久免费版 编辑:程序博客网 时间:2024/05/29 19:16

消息从客户端发送而来,之前几节介绍了 客户端下 对象存储、块存储库的实现以及他们在客户端下API请求的发送过程(Ceph学习——Librados与Osdc实现源码解析 、 Ceph学习——客户端读写操作分析 、 Ceph学习——Librbd块存储库与RBD读写流程源码分析)。当请求被封装后,通过消息发送模块(Ceph学习——Ceph网络通信机制与源码分析)将请求及其相关信息发送到服务端实现真正的对数据的操作。服务端的操作模块便是由OSD、OS模块完成的,这节先介绍OSD模块。

  • OSD 模块主要的类
    • OSD类
    • PrimaryLogPG类
    • PGBackend类
  • OSD读写函数调用流程

直接上图:


这里写图片描述

同样当前最新的版本,和之前的版本有所不同,有一些模块简化了,类的名字也改了。先介绍图中涉及的相关的类,然后在对类中具体函数主要调用流程进行分析。

OSD 模块主要的类


这里写图片描述

盗图:其中ReplicatedPG 在最新的版本中去掉了,更改为PrimaryLogPG类

OSD类

OSD和OSDService是核心类,他们直接在顶层负责一个OSD节点的工作,从客户端的得到的消息,就是先到达OSD类中,通过OSD类的处理,在调用PrimaryLogPG(之前为ReplicatedPG 类)类进行处理。该类中,在读写流程中的主要工作是消息(Message)封装为 RequestOp,检查epoch (版本)是否需要更新,并获取PG句柄,并做PG相关的检查,最后将请求加入队列。

PrimaryLogPG类

该类继承自PG类,PGBackend::Listener(该类是一个抽象类)类PG类处理相关状态的维护,以及实现PG层面的功能,核心功能是用boost库的statechart状态机来做PG状态转换。它实现了PG内的数据读写等功能。

PGBackend类

该类主要功能是将请求数据通过事务的形式同步到一个PG的其它从OSD上(注意:主OSD的操作PrimaryLogPG来完成)。
他有两个子类,分别是 ReplicatedBackend和ECBackend,对应着PG的的两种类型的实现。

OSD读写函数调用流程


这里写图片描述

1)OSD::ms_fast_dispatch 函数是接收消息Message的入口函数,他被网络模块的接收线程调用。主要工作是 检查service服务 、把Message封装为OpRequest类型、获取session、获取最新的OSdMap,最后dispatch_session_waiting,进入下一步。

void OSD::ms_fast_dispatch(Message *m){  FUNCTRACE();  if (service.is_stopping()) {//检查service,如果停止了直接返回    m->put();    return;  }  OpRequestRef op = op_tracker.create_request<OpRequest, Message*>(m);//把Message封装为OpRequest类型......  if (m->get_connection()->has_features(CEPH_FEATUREMASK_RESEND_ON_SPLIT) ||      m->get_type() != CEPH_MSG_OSD_OP) {    // queue it directly直接调用enqueue_op处理    enqueue_op(      static_cast<MOSDFastDispatchOp*>(m)->get_spg(),      op,      static_cast<MOSDFastDispatchOp*>(m)->get_map_epoch());  } else {    Session *session = static_cast<Session*>(m->get_connection()->get_priv());//获取 session 其中包含了一个Connection的相关信息    if (session) {      {    Mutex::Locker l(session->session_dispatch_lock);    op->get();    session->waiting_on_map.push_back(*op);//将请求加如waiting_on_map的列表里    OSDMapRef nextmap = service.get_nextmap_reserved();//获取最新的OSDMAP    dispatch_session_waiting(session, nextmap);//该函数中 循环处理请求    service.release_map(nextmap);      }      session->put();    }  }  OID_EVENT_TRACE_WITH_MSG(m, "MS_FAST_DISPATCH_END", false); }

2)OSD::dispatch_session_waiting 主要工作是循环处理队列waiting_on_map中的元素,对比OSDmap,以及获取他们的pgid,最后调用enqueue_op处理。

void OSD::dispatch_session_waiting(Session *session, OSDMapRef osdmap){  assert(session->session_dispatch_lock.is_locked());  auto i = session->waiting_on_map.begin();  while (i != session->waiting_on_map.end()) {//循环处理waiting_on_map中的元素    OpRequestRef op = &(*i);    assert(ms_can_fast_dispatch(op->get_req()));    const MOSDFastDispatchOp *m = static_cast<const MOSDFastDispatchOp*>(      op->get_req());    if (m->get_min_epoch() > osdmap->get_epoch()) {//osdmap版本不对应      break;    }    session->waiting_on_map.erase(i++);    op->put();    spg_t pgid;    if (m->get_type() == CEPH_MSG_OSD_OP) {      pg_t actual_pgid = osdmap->raw_pg_to_pg(    static_cast<const MOSDOp*>(m)->get_pg());      //osdmap->get_primary_shard(actual_pgid, &pgid)获取 pgid  该PG的主OSD      if (!osdmap->get_primary_shard(actual_pgid, &pgid)) {    continue;      }    } else {      pgid = m->get_spg();    }    enqueue_op(pgid, op, m->get_map_epoch());//获取成功则调用enqueue_op处理  }  if (session->waiting_on_map.empty()) {    clear_session_waiting_on_map(session);  } else {    register_session_waiting_on_map(session);  }}

3)OSD::enqueue_op 的主要工作是将求情加入到op_shardedwq队列中

void OSD::enqueue_op(spg_t pg, OpRequestRef& op, epoch_t epoch){...  op->osd_trace.event("enqueue op");  op->osd_trace.keyval("priority", op->get_req()->get_priority());  op->osd_trace.keyval("cost", op->get_req()->get_cost());  op->mark_queued_for_pg();  logger->tinc(l_osd_op_before_queue_op_lat, latency);  //加入op_shardedwq队列中  op_shardedwq.queue(    OpQueueItem(      unique_ptr<OpQueueItem::OpQueueable>(new PGOpItem(pg, op)),      op->get_req()->get_cost(),      op->get_req()->get_priority(),      op->get_req()->get_recv_stamp(),      op->get_req()->get_source().num(),      epoch));}

4)OSD::dequeue_op 调用函数进行osdmap的更新,调用do_request进入PG处理流程

void OSD::dequeue_op(  PGRef pg, OpRequestRef op,  ThreadPool::TPHandle &handle){......  logger->tinc(l_osd_op_before_dequeue_op_lat, latency);  Session *session = static_cast<Session *>(    op->get_req()->get_connection()->get_priv());  if (session) {      //调用该函数进行 osdmap的更新    maybe_share_map(session, op, pg->get_osdmap());    session->put();  }  //正在是删除、直接返回  if (pg->is_deleting())    return;  op->mark_reached_pg();  op->osd_trace.event("dequeue_op");  //调用pg的do_request处理  pg->do_request(op, handle);  // finish  dout(10) << "dequeue_op " << op << " finish" << dendl;  OID_EVENT_TRACE_WITH_MSG(op->get_req(), "DEQUEUE_OP_END", false);}

5)PrimaryLogPG::do_request该函数 主要你检查PG的状态,以及根据消息类型进行不同处理

void PrimaryLogPG::do_request(  OpRequestRef& op,  ThreadPool::TPHandle &handle){...  // make sure we have a new enough map  //检查 osdmap  auto p = waiting_for_map.find(op->get_source());...  //是否可以丢弃  if (can_discard_request(op)) {    return;  }......  //PG还没有peered  if (!is_peered()) {    // Delay unless PGBackend says it's ok      //检查pgbackend是否可以处理这个请求    if (pgbackend->can_handle_while_inactive(op)) {      bool handled = pgbackend->handle_message(op);//可以处理,则调用该函数处理      assert(handled);      return;    } else {      waiting_for_peered.push_back(op);//不可以则加入waiting_for_peered队列      op->mark_delayed("waiting for peered");      return;    }  }  ...  ...  //PG处于Peered 并且flushes_in_progress为0的状态下  assert(is_peered() && flushes_in_progress == 0);  if (pgbackend->handle_message(op))    return;// 根据不同的消息请求类型,进行相应的处理  switch (op->get_req()->get_type()) {  case CEPH_MSG_OSD_OP:  case CEPH_MSG_OSD_BACKOFF:    if (!is_active()) {//该PG状态 为非active状态      dout(20) << " peered, not active, waiting for active on " << op << dendl;      waiting_for_active.push_back(op);//加入队列      op->mark_delayed("waiting for active");      return;    }    switch (op->get_req()->get_type()) {    case CEPH_MSG_OSD_OP:      // verify client features 如果是cache pool ,操作没有带CEPH_FEATURE_OSD_CACHEPOOL的feature标志,返回错误信息      if ((pool.info.has_tiers() || pool.info.is_tier()) &&      !op->has_feature(CEPH_FEATURE_OSD_CACHEPOOL)) {    osd->reply_op_error(op, -EOPNOTSUPP);    return;      }      do_op(op);//调用do_op 处理      break;    case CEPH_MSG_OSD_BACKOFF:      // object-level backoff acks handled in osdop context      handle_backoff(op);      break;    }    break;...//各种消息类型...  default:    assert(0 == "bad message type in do_request");  }}

6)PrimaryLogPG::do_op 函数很长很负责,这里着看相关调用流程好了,主要功能是解析出操作来,然后对操作的个中参数进行检查,检查相关对象的状态,以及该对象的head、snap、clone对象的状态等,并调用函数获取对象的上下文、操作的上下文(ObjectContext、OPContext)

void PrimaryLogPG::do_op(OpRequestRef& op){  FUNCTRACE();  // NOTE: take a non-const pointer here; we must be careful not to  // change anything that will break other reads on m (operator<<).  MOSDOp *m = static_cast<MOSDOp*>(op->get_nonconst_req());  assert(m->get_type() == CEPH_MSG_OSD_OP);  //解析字段,从bufferlist解析数据  if (m->finish_decode()) {    op->reset_desc();   // for TrackedOp    m->clear_payload();  }......  if ((m->get_flags() & (CEPH_OSD_FLAG_BALANCE_READS |             CEPH_OSD_FLAG_LOCALIZE_READS)) &&      op->may_read() &&      !(op->may_write() || op->may_cache())) {    // balanced reads; any replica will do  平衡读,则主从OSD都可以读取    if (!(is_primary() || is_replica())) {      osd->handle_misdirected_op(this, op);      return;    }  } else {    // normal case; must be primary  否则只能读取主OSD    if (!is_primary()) {      osd->handle_misdirected_op(this, op);      return;    }  }  if (!op_has_sufficient_caps(op)) {    osd->reply_op_error(op, -EPERM);    return;  }  //op中包含includes_pg_op该操作,则调用 do_pg_op(op)处理  if (op->includes_pg_op()) {    return do_pg_op(op);  }  // object name too long?  //检查名字是否太长  if (m->get_oid().name.size() > cct->_conf->osd_max_object_name_len) {    dout(4) << "do_op name is longer than "        << cct->_conf->osd_max_object_name_len        << " bytes" << dendl;    osd->reply_op_error(op, -ENAMETOOLONG);    return;  }......  // blacklisted?  //发送请求的客户端是黑名单中的一个  if (get_osdmap()->is_blacklisted(m->get_source_addr())) {    dout(10) << "do_op " << m->get_source_addr() << " is blacklisted" << dendl;    osd->reply_op_error(op, -EBLACKLISTED);    return;  }......  // missing object?  //head对象是否处于缺失状态  if (is_unreadable_object(head)) {    if (!is_primary()) {      osd->reply_op_error(op, -EAGAIN);      return;    }    if (can_backoff &&    (g_conf->osd_backoff_on_degraded ||     (g_conf->osd_backoff_on_unfound && missing_loc.is_unfound(head)))) {      add_backoff(session, head, head);      maybe_kick_recovery(head);    } else {      wait_for_unreadable_object(head, op);//加入队列,等待恢复完成    }    return;  }  // degraded object?  //顺序写 且head对象正在恢复状态  if (write_ordered && is_degraded_or_backfilling_object(head)) {    if (can_backoff && g_conf->osd_backoff_on_degraded) {      add_backoff(session, head, head);      maybe_kick_recovery(head);    } else {      wait_for_degraded_object(head, op);//加入队列,等待    }    return;  }  //顺序写,切处于数据一致性检查 scrub时期  if (write_ordered && scrubber.is_chunky_scrub_active() &&      scrubber.write_blocked_by_scrub(head)) {    dout(20) << __func__ << ": waiting for scrub" << dendl;    waiting_for_scrub.push_back(op);    op->mark_delayed("waiting for scrub");    return;  } ... ...  //若果是顺序写,并且该对象在该队列中  if (write_ordered && objects_blocked_on_cache_full.count(head)) {    block_write_on_full_cache(head, op);    return;  }  ...  ...  // io blocked on obc?  //检查对象是否被blocked  if (!m->has_flag(CEPH_OSD_FLAG_FLUSH) &&      maybe_await_blocked_head(oid, op)) {    return;  }  //调用find_object_context获取object_context  int r = find_object_context(    oid, &obc, can_create,    m->has_flag(CEPH_OSD_FLAG_MAP_SNAP_CLONE),    &missing_oid);// hit.set 不为空 则设置  bool in_hit_set = false;  if (hit_set) {    if (obc.get()) {      if (obc->obs.oi.soid != hobject_t() && hit_set->contains(obc->obs.oi.soid))    in_hit_set = true;    } else {      if (missing_oid != hobject_t() && hit_set->contains(missing_oid))        in_hit_set = true;    }    if (!op->hitset_inserted) {      hit_set->insert(oid);      op->hitset_inserted = true;      if (hit_set->is_full() ||          hit_set_start_stamp + pool.info.hit_set_period <= m->get_recv_stamp()) {        hit_set_persist();      }    }  }  //agent_state 不为空  if (agent_state) {    if (agent_choose_mode(false, op))// 调用该函数进行选择agent的状态      return;  }.........  op->mark_started();  execute_ctx(ctx);//调用该函数,执行相关操作  utime_t prepare_latency = ceph_clock_now();  prepare_latency -= op->get_dequeued_time();  osd->logger->tinc(l_osd_op_prepare_lat, prepare_latency);  if (op->may_read() && op->may_write()) {    osd->logger->tinc(l_osd_op_rw_prepare_lat, prepare_latency);  } else if (op->may_read()) {    osd->logger->tinc(l_osd_op_r_prepare_lat, prepare_latency);  } else if (op->may_write() || op->may_cache()) {    osd->logger->tinc(l_osd_op_w_prepare_lat, prepare_latency);  }  // force recovery of the oldest missing object if too many logs  maybe_force_recovery();}

7) PrimaryLogPG::find_object_context 函数主要根据 不同发情况 通过调用 PrimaryLogPG::get_object_context函数获取 对象上下文。

/* * If we return an error, and set *pmissing, then promoting that * object may help. * * If we return -EAGAIN, we will always set *pmissing to the missing * object to wait for. * * If we return an error but do not set *pmissing, then we know the * object does not exist. *///获取一个对象的ObjectContextint PrimaryLogPG::find_object_context(const hobject_t& oid,                      ObjectContextRef *pobc,                      bool can_create,                      bool map_snapid_to_clone,                      hobject_t *pmissing){  FUNCTRACE();  assert(oid.pool == static_cast<int64_t>(info.pgid.pool()));  // want the head?  if (oid.snap == CEPH_NOSNAP) {    ObjectContextRef obc = get_object_context(oid, can_create);//如果是想要原始对象(head)直接调用    if (!obc) {      if (pmissing)        *pmissing = oid;      return -ENOENT;    }    dout(10) << "find_object_context " << oid       << " @" << oid.snap       << " oi=" << obc->obs.oi       << dendl;    *pobc = obc;    return 0;  }  hobject_t head = oid.get_head();  // we want a snap  //不是map_snapid_to_clone对象且,该snap快照已经被删除,直接返回-ENOENT  if (!map_snapid_to_clone && pool.info.is_removed_snap(oid.snap)) {    dout(10) << __func__ << " snap " << oid.snap << " is removed" << dendl;    return -ENOENT;  }  SnapSetContext *ssc = get_snapset_context(oid, can_create);//调用get_snapset_context对象来获取SnapSetContext对象。  if (!ssc || !(ssc->exists || can_create)) {    dout(20) << __func__ << " " << oid << " no snapset" << dendl;    if (pmissing)      *pmissing = head;  // start by getting the head    if (ssc)      put_snapset_context(ssc);    return -ENOENT;  }//如果是map_snapid_to_clone  if (map_snapid_to_clone) {    dout(10) << "find_object_context " << oid << " @" << oid.snap         << " snapset " << ssc->snapset         << " map_snapid_to_clone=true" << dendl;    if (oid.snap > ssc->snapset.seq) {//大于说明 该快照最新,osd还没完成相关信息的更新,直接返回head对象的上下文      // already must be readable      ObjectContextRef obc = get_object_context(head, false);//直接返回head对象的上下文      dout(10) << "find_object_context " << oid << " @" << oid.snap           << " snapset " << ssc->snapset           << " maps to head" << dendl;      *pobc = obc;      put_snapset_context(ssc);      return (obc && obc->obs.exists) ? 0 : -ENOENT;    } else {      vector<snapid_t>::const_iterator citer = std::find(//否则检查snapset的克隆列表    ssc->snapset.clones.begin(),    ssc->snapset.clones.end(),    oid.snap);      if (citer == ssc->snapset.clones.end()) {    dout(10) << "find_object_context " << oid << " @" << oid.snap         << " snapset " << ssc->snapset         << " maps to nothing" << dendl;    put_snapset_context(ssc);    return -ENOENT;      }      ...      ...      //找到,但处于缺失状态      if (pg_log.get_missing().is_missing(oid)) {    dout(10) << "find_object_context " << oid << " @" << oid.snap         << " snapset " << ssc->snapset         << " " << oid << " is missing" << dendl;    if (pmissing)      *pmissing = oid;    put_snapset_context(ssc);    return -EAGAIN;      }    ...    ...//各种情况下的find_object_context}

8)get_object_context 实际去获取上下文,先在缓存里面找,如果没有在调用函数去获取。另外在调用get_snapset_context获取SnapSetContext。

ObjectContextRef PrimaryLogPG::get_object_context(  const hobject_t& soid,  bool can_create,  const map<string, bufferlist> *attrs){...//先在缓存里面找  ObjectContextRef obc = object_contexts.lookup(soid);  osd->logger->inc(l_osd_object_ctx_cache_total);  if (obc) {    osd->logger->inc(l_osd_object_ctx_cache_hit);    dout(10) << __func__ << ": found obc in cache: " << obc         << dendl;  } else {    dout(10) << __func__ << ": obc NOT found in cache: " << soid << dendl;    // check disk    bufferlist bv;    if (attrs) {      assert(attrs->count(OI_ATTR));      bv = attrs->find(OI_ATTR)->second;    } else {      int r = pgbackend->objects_get_attr(soid, OI_ATTR, &bv);//缓存没有就调用函数去获取      if (r < 0) {    if (!can_create) {      dout(10) << __func__ << ": no obc for soid "           << soid << " and !can_create"           << dendl;      return ObjectContextRef();   // -ENOENT!    }    dout(10) << __func__ << ": no obc for soid "         << soid << " but can_create"         << dendl;    // new object.    object_info_t oi(soid);    //调用get_snapset_context获取 SnapSetContext    SnapSetContext *ssc = get_snapset_context(      soid, true, 0, false);        assert(ssc);    obc = create_object_context(oi, ssc);    dout(10) << __func__ << ": " << obc << " " << soid         << " " << obc->rwstate         << " oi: " << obc->obs.oi         << " ssc: " << obc->ssc         << " snapset: " << obc->ssc->snapset << dendl;    return obc;      }    } ... ...  }}

9)

SnapSetContext *PrimaryLogPG::get_snapset_context(  const hobject_t& oid,  bool can_create,  const map<string, bufferlist> *attrs,  bool oid_existed){  Mutex::Locker l(snapset_contexts_lock);  SnapSetContext *ssc;  map<hobject_t, SnapSetContext*>::iterator p = snapset_contexts.find(    oid.get_snapdir());  if (p != snapset_contexts.end()) {    if (can_create || p->second->exists) {      ssc = p->second;    } else {      return NULL;    }  } else {    bufferlist bv;    if (!attrs) {      int r = -ENOENT;      if (!(oid.is_head() && !oid_existed)) {    r = pgbackend->objects_get_attr(oid.get_head(), SS_ATTR, &bv);      }      if (r < 0 && !can_create)    return NULL;    } else {      assert(attrs->count(SS_ATTR));      bv = attrs->find(SS_ATTR)->second;    }    ssc = new SnapSetContext(oid.get_snapdir());    _register_snapset_context(ssc);    if (bv.length()) {      bufferlist::iterator bvp = bv.begin();      try {    ssc->snapset.decode(bvp);      } catch (buffer::error& e) {        dout(0) << __func__ << " Can't decode snapset: " << e << dendl;    return NULL;      }      ssc->exists = true;    } else {      ssc->exists = false;    }  }  assert(ssc);  ssc->ref++;  return ssc;}

10)该函数是由do_op调用的, 主要工作是检查对象状态和上下文相关信息的获取,并调用函数prepare _transactions 把操作封装到事务中。如果是读取操作,则调用相关读取函数(同步、异步)。如果是写操作,则 调用calc_trim_to计算是否将旧的PG log日志进行trim操作、 issue_repop(repop, ctx)向各个副本发送同步操作请求、eval_repop(repop)检查发向各个副本的同步操作请求是否已经reply成功

void PrimaryLogPG::execute_ctx(OpContext *ctx){  FUNCTRACE();  dout(10) << __func__ << " " << ctx << dendl;  ctx->reset_obs(ctx->obc);  ctx->update_log_only = false; // reset in case finish_copyfrom() is re-running execute_ctx  OpRequestRef op = ctx->op;  const MOSDOp *m = static_cast<const MOSDOp*>(op->get_req());  ObjectContextRef obc = ctx->obc;  const hobject_t& soid = obc->obs.oi.soid;  // this method must be idempotent since we may call it several times  // before we finally apply the resulting transaction.  ctx->op_t.reset(new PGTransaction);  if (op->may_write() || op->may_cache()) {    // snap    if (!(m->has_flag(CEPH_OSD_FLAG_ENFORCE_SNAPC)) &&//如果是对整个pool的快照操作    pool.info.is_pool_snaps_mode()) {      // use pool's snapc      ctx->snapc = pool.snapc;//设置为该值  pool的信息    } else {//如果是用户特定的快照   如RBD      // client specified snapc      ctx->snapc.seq = m->get_snap_seq();//设置为信息带的相关信息      ctx->snapc.snaps = m->get_snaps();      filter_snapc(ctx->snapc.snaps);    }    if ((m->has_flag(CEPH_OSD_FLAG_ORDERSNAP)) &&    ctx->snapc.seq < obc->ssc->snapset.seq) {//客户端的 snap序号小于服务端的 返回错误      dout(10) << " ORDERSNAP flag set and snapc seq " << ctx->snapc.seq           << " < snapset seq " << obc->ssc->snapset.seq           << " on " << obc->obs.oi.soid << dendl;      reply_ctx(ctx, -EOLDSNAPC);      return;    }...  if (!ctx->user_at_version)    ctx->user_at_version = obc->obs.oi.user_version;  dout(30) << __func__ << " user_at_version " << ctx->user_at_version << dendl;//若是读操作,给objectContext加上ondisk_read_lock锁  if (op->may_read()) {    dout(10) << " taking ondisk_read_lock" << dendl;    obc->ondisk_read_lock();  }  {#ifdef WITH_LTTNG    osd_reqid_t reqid = ctx->op->get_reqid();#endif    tracepoint(osd, prepare_tx_enter, reqid.name._type,        reqid.name._num, reqid.tid, reqid.inc);  }  int result = prepare_transaction(ctx);//将相关的操作封装到 ctx->op_t中 封装成事务  {#ifdef WITH_LTTNG    osd_reqid_t reqid = ctx->op->get_reqid();#endif    tracepoint(osd, prepare_tx_exit, reqid.name._type,        reqid.name._num, reqid.tid, reqid.inc);  }  if (op->may_read()) {    dout(10) << " dropping ondisk_read_lock" << dendl;    obc->ondisk_read_unlock();  }  bool pending_async_reads = !ctx->pending_async_reobc->ondisk_read_lock();ads.empty();  if (result == -EINPROGRESS || pending_async_reads) {    // come back later.    if (pending_async_reads) {      assert(pool.info.is_erasure());      in_progress_async_reads.push_back(make_pair(op, ctx));      ctx->start_async_reads(this);//如果是,则调用该函数 异步读取    }    return;  }  if (result == -EAGAIN) {    // clean up after the ctx    close_op_ctx(ctx);    return;  }  bool successful_write = !ctx->op_t->empty() && op->may_write() && result >= 0;  // prepare the reply  ctx->reply = new MOSDOpReply(m, 0, get_osdmap()->get_epoch(), 0,                   successful_write, op->qos_resp);  // read or error?  if ((ctx->op_t->empty() || result < 0) && !ctx->update_log_only) {    // finish side-effects    if (result >= 0)      do_osd_op_effects(ctx, m->get_connection());    complete_read_ctx(result, ctx);//同步读取,    return;  }  ctx->reply->set_reply_versions(ctx->at_version, ctx->user_at_version);  assert(op->may_write() || op->may_cache());  // trim log?  calc_trim_to();//调用函数 计算是否将旧的PG log日志进行trim操作  ...  ...  issue_repop(repop, ctx);//向各个副本发送同步操作请求  eval_repop(repop);//检查发向各个副本的同步操作请求是否已经reply成功  repop->put();}

11)PrimaryLogPG::issue_repop函数 主要是把讲求发送到 副本OSD上进行处理

void PrimaryLogPG::issue_repop(RepGather *repop, OpContext *ctx){  FUNCTRACE();  const hobject_t& soid = ctx->obs->oi.soid;  dout(7) << "issue_repop rep_tid " << repop->rep_tid          << " o " << soid          << dendl;  repop->v = ctx->at_version;  if (ctx->at_version > eversion_t()) {    for (set<pg_shard_t>::iterator i = actingbackfill.begin();     i != actingbackfill.end();     ++i) {      if (*i == get_primary()) continue;      pg_info_t &pinfo = peer_info[*i];      // keep peer_info up to date      if (pinfo.last_complete == pinfo.last_update)    pinfo.last_complete = ctx->at_version;      pinfo.last_update = ctx->at_version;    }  } //为写做准备 给相关对象加ondisk_write_lock锁  ctx->obc->ondisk_write_lock();  ctx->op_t->add_obc(ctx->obc);  if (ctx->clone_obc) {    ctx->clone_obc->ondisk_write_lock();    ctx->op_t->add_obc(ctx->clone_obc);  }  if (ctx->head_obc) {    ctx->head_obc->ondisk_write_lock();    ctx->op_t->add_obc(ctx->head_obc);  }  Context *on_all_commit = new C_OSD_RepopCommit(this, repop);  Context *on_all_applied = new C_OSD_RepopApplied(this, repop);  Context *onapplied_sync = new C_OSD_OndiskWriteUnlock(    ctx->obc,    ctx->clone_obc,    ctx->head_obc);  if (!(ctx->log.empty())) {    assert(ctx->at_version >= projected_last_update);    projected_last_update = ctx->at_version;  }  for (auto &&entry: ctx->log) {    projected_log.add(entry);  }  //将事务发送到OSD处理,对于不同的PG实现,调用不同的类,PGBackend有两个子类,ReplicatedBackend 和 ECBackend 两个类对应不同的实现  pgbackend->submit_transaction(    soid,    ctx->delta_stats,    ctx->at_version,    std::move(ctx->op_t),    pg_trim_to,    min_last_complete_ondisk,    ctx->log,    ctx->updated_hset_history,    onapplied_sync,    on_all_applied,    on_all_commit,    repop->rep_tid,    ctx->reqid,    ctx->op);}

12)该函数用于最终调用网络接口,把更新请求发送给从OSD,并调用queue_transactions 函数对该PG的主OSD上的实现更改。

void ReplicatedBackend::submit_transaction(  const hobject_t &soid,  const object_stat_sum_t &delta_stats,  const eversion_t &at_version,  PGTransactionUPtr &&_t,  const eversion_t &trim_to,  const eversion_t &roll_forward_to,  const vector<pg_log_entry_t> &_log_entries,  boost::optional<pg_hit_set_history_t> &hset_history,  Context *on_local_applied_sync,  Context *on_all_acked,  Context *on_all_commit,  ceph_tid_t tid,  osd_reqid_t reqid,  OpRequestRef orig_op){  parent->apply_stats(    soid,    delta_stats);  vector<pg_log_entry_t> log_entries(_log_entries);  ObjectStore::Transaction op_t;  PGTransactionUPtr t(std::move(_t));  set<hobject_t> added, removed;  generate_transaction(    t,    coll,    log_entries,    &op_t,    &added,    &removed);  assert(added.size() <= 1);  assert(removed.size() <= 1);  auto insert_res = in_progress_ops.insert(    make_pair(      tid,      InProgressOp(    tid, on_all_commit, on_all_acked,    orig_op, at_version)      )    );  assert(insert_res.second);  //构件InProgressOp请求记录  InProgressOp &op = insert_res.first->second;  op.waiting_for_applied.insert(    parent->get_actingbackfill_shards().begin(),    parent->get_actingbackfill_shards().end());  op.waiting_for_commit.insert(    parent->get_actingbackfill_shards().begin(),    parent->get_actingbackfill_shards().end());  //调用该函数,把请求发送出去,发送到从OSD  issue_op(    soid,    at_version,    tid,    reqid,    trim_to,    at_version,    added.size() ? *(added.begin()) : hobject_t(),    removed.size() ? *(removed.begin()) : hobject_t(),    log_entries,    hset_history,    &op,    op_t);  add_temp_objs(added);  clear_temp_objs(removed);  parent->log_operation(    log_entries,    hset_history,    trim_to,    at_version,    true,    op_t);  op_t.register_on_applied_sync(on_local_applied_sync);  op_t.register_on_applied(    parent->bless_context(      new C_OSD_OnOpApplied(this, &op)));  op_t.register_on_commit(    parent->bless_context(      new C_OSD_OnOpCommit(this, &op)));  vector<ObjectStore::Transaction> tls;  tls.push_back(std::move(op_t));  parent->queue_transactions(tls, op.op);//调用该函数完成最后的操作,对该PG的主OSD上的本地对象完成操作}

13) 调用的queue_transactions函数,会调用到os层。
调用的函数位于 PrinaryLogPG.h

  void queue_transactions(vector<ObjectStore::Transaction>& tls,              OpRequestRef op) override {    osd->store->queue_transactions(osr.get(), tls, 0, 0, 0, op, NULL);//最终调用到os层  }

其中 osd->store 定义为
ObjectStore *store;

原创粉丝点击