人工智能--打飞机游戏

来源:互联网 发布:cf外设淘宝店 编辑:程序博客网 时间:2024/05/17 00:50

代码下载:Here。

很久以前微信流行过一个小游戏:打飞机,这个游戏简单又无聊。在2017年来临之际,我就实现一个超级弱智的人工智能(AI),这货可以躲避从屏幕上方飞来的飞机。本帖只使用纯Python实现,不依赖任何高级库。

本文的AI基于neuro-evolution,首先简单科普一下neuro-evolution。从neuro-evolution这个名字就可以看出它由两部分组成-neuro and evolution,它是使用进化算法(遗传算法是进化算法的一种)提升人工神经网络的机器学习技术,其实就是用进化算法改进并选出最优的神经网络。

使用TPOT自动选择scikit-learn机器学习模型和参数
neuro-evolution

定义一些变量:

import math
import random

神经网络3层, 1个隐藏层; 4个input和1个output

network = [4, [16], 1]

遗传算法相关

population = 50
elitism = 0.2
random_behaviour = 0.1
mutation_rate = 0.5
mutation_range = 2
historic = 0
low_historic = False
score_sort = -1
n_child = 1
定义神经网络:

激活函数

def sigmoid(z):
return 1.0/(1.0+math.exp(-z))

random number

def random_clamped():
return random.random()*2-1

“神经元”

class Neuron():
def init(self):
self.biase = 0
self.weights = []

def init_weights(self, n):    self.weights = []    for i in range(n):        self.weights.append(random_clamped())def __repr__(self):    return 'Neuron weight size:{}  biase value:{}'.format(len(self.weights), self.biase)

class Layer():
def init(self, index):
self.index = index
self.neurons = []

def init_neurons(self, n_neuron, n_input):    self.neurons = []    for i in range(n_neuron):        neuron = Neuron()        neuron.init_weights(n_input)        self.neurons.append(neuron)def __repr__(self):    return 'Layer ID:{}  Layer neuron size:{}'.format(self.index, len(self.neurons))

神经网络

class NeuroNetwork():
def init(self):
self.layers = []

# input:输入层神经元数 hiddens:隐藏层 output:输出层神经元数def init_neuro_network(self, input, hiddens , output):    index = 0    previous_neurons = 0    # input    layer = Layer(index)    layer.init_neurons(input, previous_neurons)    previous_neurons = input    self.layers.append(layer)    index += 1    # hiddens    for i in range(len(hiddens)):        layer = Layer(index)        layer.init_neurons(hiddens[i], previous_neurons)        previous_neurons = hiddens[i]        self.layers.append(layer)        index += 1    # output    layer = Layer(index)    layer.init_neurons(output, previous_neurons)    self.layers.append(layer)def get_weights(self):    data = { 'network':[], 'weights':[] }    for layer in self.layers:        data['network'].append(len(layer.neurons))        for neuron in layer.neurons:            for weight in neuron.weights:                data['weights'].append(weight)    return datadef set_weights(self, data):    previous_neurons = 0    index = 0    index_weights = 0    self.layers = []    for i in data['network']:        layer = Layer(index)        layer.init_neurons(i, previous_neurons)        for j in range(len(layer.neurons)):            for k in range(len(layer.neurons[j].weights)):                layer.neurons[j].weights[k] = data['weights'][index_weights]                index_weights += 1        previous_neurons = i        index += 1        self.layers.append(layer)# 输入游戏环境中的一些条件(如敌机位置), 返回要执行的操作def feed_forward(self, inputs):    for i in range(len(inputs)):        self.layers[0].neurons[i].biase = inputs[i]    prev_layer = self.layers[0]    for i in range(len(self.layers)):        # 第一层没有weights        if i == 0:            continue        for j in range(len(self.layers[i].neurons)):            sum = 0            for k in range(len(prev_layer.neurons)):                sum += prev_layer.neurons[k].biase * self.layers[i].neurons[j].weights[k]            self.layers[i].neurons[j].biase = sigmoid(sum)        prev_layer = self.layers[i]    out = []    last_layer = self.layers[-1]    for i in range(len(last_layer.neurons)):        out.append(last_layer.neurons[i].biase)    return outdef print_info(self):    for layer in self.layers:        print(layer)

遗传算法:

“基因组”

class Genome():
def init(self, score, network_weights):
self.score = score
self.network_weights = network_weights

class Generation():
def init(self):
self.genomes = []

def add_genome(self, genome):    i = 0    for i in range(len(self.genomes)):        if score_sort < 0:            if genome.score > self.genomes[i].score:                break        else:            if genome.score < self.genomes[i].score:                break    self.genomes.insert(i, genome)    # 杂交+突变def breed(self, genome1, genome2, n_child):    datas = []    for n in range(n_child):        data = genome1        for i in range(len(genome2.network_weights['weights'])):            if random.random() <= 0.5:                data.network_weights['weights'][i] = genome2.network_weights['weights'][i]        for i in range(len(data.network_weights['weights'])):            if random.random() <= mutation_rate:                data.network_weights['weights'][i] += random.random() * mutation_range * 2 - mutation_range        datas.append(data)    return datas    # 生成下一代def generate_next_generation(self):    nexts = []    for i in range(round(elitism*population)):        if len(nexts) < population:            nexts.append(self.genomes[i].network_weights)    for i in range(round(random_behaviour*population)):        n = self.genomes[0].network_weights        for k in range(len(n['weights'])):            n['weights'][k] = random_clamped()        if len(nexts) < population:            nexts.append(n)    max_n = 0    while True:        for i in range(max_n):            childs = self.breed(self.genomes[i], self.genomes[max_n], n_child if n_child > 0 else 1)            for c in range(len(childs)):                nexts.append(childs[c].network_weights)                if len(nexts) >= population:                    return nexts        max_n += 1        if max_n >= len(self.genomes)-1:            max_n = 0

NeuroEvolution:
class Generations():
def init(self):
self.generations = []

def first_generation(self):    out = []    for i in range(population):        nn = NeuroNetwork()        nn.init_neuro_network(network[0], network[1], network[2])        out.append(nn.get_weights())    self.generations.append(Generation())    return outdef next_generation(self):    if len(self.generations) == 0:        return False    gen = self.generations[-1].generate_next_generation()    self.generations.append(Generation())    return gendef add_genome(self, genome):    if len(self.generations) == 0:        return False    return self.generations[-1].add_genome(genome)

class NeuroEvolution():
def init(self):
self.generations = Generations()

def restart(self):    self.generations = Generations()def next_generation(self):    networks = []    if len(self.generations.generations) == 0:        networks = self.generations.first_generation()    else:        networks = self.generations.next_generation()    nn = []    for i in range(len(networks)):        n = NeuroNetwork()        n.set_weights(networks[i])        nn.append(n)    if low_historic:        if len(self.generations.generations) >= 2:            genomes = self.generations.generations[len(self.generations.generations) - 2].genomes            for i in range(genomes):                genomes[i].network = None    if historic != -1:        if len(self.generations.generations) > historic+1:            del self.generations.generations[0:len(self.generations.generations)-(historic+1)]    return nndef network_score(self, score, network):    self.generations.add_genome(Genome(score, network.get_weights()))

是AI就躲个飞机

import pygame
import sys
from pygame.locals import *
import random
import math

import neuro_evolution

BACKGROUND = (200, 200, 200)
SCREEN_SIZE = (320, 480)

class Plane():
def init(self, plane_image):
self.plane_image = plane_image
self.rect = plane_image.get_rect()

    self.width = self.rect[2]    self.height = self.rect[3]    self.x = SCREEN_SIZE[0]/2 - self.width/2    self.y = SCREEN_SIZE[1] - self.height    self.move_x = 0    self.speed = 2    self.alive = Truedef update(self):    self.x += self.move_x * self.speeddef draw(self, screen):    screen.blit(self.plane_image, (self.x, self.y, self.width, self.height))def is_dead(self, enemes):    if self.x < -self.width or self.x + self.width > SCREEN_SIZE[0]+self.width:        return True    for eneme in enemes:        if self.collision(eneme):            return True    return Falsedef collision(self, eneme):    if not (self.x > eneme.x + eneme.width or self.x + self.width < eneme.x or self.y > eneme.y + eneme.height or self.y + self.height < eneme.y):        return True    else:        return Falsedef get_inputs_values(self, enemes, input_size=4):    inputs = []    for i in range(input_size):        inputs.append(0.0)    inputs[0] = (self.x*1.0 / SCREEN_SIZE[0])    index = 1    for eneme in enemes:        inputs[index] = eneme.x*1.0 / SCREEN_SIZE[0]        index += 1        inputs[index] = eneme.y*1.0 / SCREEN_SIZE[1]        index += 1    #if len(enemes) > 0:        #distance = math.sqrt(math.pow(enemes[0].x + enemes[0].width/2 - self.x + self.width/2, 2) + math.pow(enemes[0].y + enemes[0].height/2 - self.y + self.height/2, 2));    if len(enemes) > 0 and self.x < enemes[0].x:        inputs[index] = -1.0        index += 1    else:        inputs[index] = 1.0    return inputs

class Enemy():
def init(self, enemy_image):
self.enemy_image = enemy_image
self.rect = enemy_image.get_rect()

    self.width = self.rect[2]    self.height = self.rect[3]    self.x = random.choice(range(0, int(SCREEN_SIZE[0] - self.width/2), 71))    self.y = 0def update(self):    self.y += 6def draw(self, screen):    screen.blit(self.enemy_image, (self.x, self.y, self.width, self.height))def is_out(self):    return True if self.y >= SCREEN_SIZE[1] else False

class Game():
def init(self):
pygame.init()
self.screen = pygame.display.set_mode(SCREEN_SIZE)
self.clock = pygame.time.Clock()
pygame.display.set_caption(‘是AI就躲个飞机’)

    self.ai = neuro_evolution.NeuroEvolution()    self.generation = 0    self.max_enemes = 1            # 加载飞机、敌机图片    self.plane_image = pygame.image.load('plane.png').convert_alpha()    self.enemy_image = pygame.image.load('enemy.png').convert_alpha()def start(self):    self.score = 0    self.planes = []    self.enemes = []    self.gen = self.ai.next_generation()    for i in range(len(self.gen)):        plane = Plane(self.plane_image)        self.planes.append(plane)    self.generation += 1    self.alives = len(self.planes)def update(self, screen):    for i in range(len(self.planes)):        if self.planes[i].alive:            inputs = self.planes[i].get_inputs_values(self.enemes)            res = self.gen[i].feed_forward(inputs)            if res[0] < 0.45:                self.planes[i].move_x = -1            elif res[0] > 0.55:                self.planes[i].move_x = 1            self.planes[i].update()            self.planes[i].draw(screen)            if self.planes[i].is_dead(self.enemes) == True:                self.planes[i].alive = False                self.alives -= 1                self.ai.network_score(self.score, self.gen[i])                if self.is_ai_all_dead():                    self.start()    self.gen_enemes()    for i in range(len(self.enemes)):        self.enemes[i].update()        self.enemes[i].draw(screen)        if self.enemes[i].is_out():            del self.enemes[i]            break    self.score += 1    print("alive:{}, generation:{}, score:{}".format(self.alives, self.generation, self.score), end='\r')def run(self, FPS=1000):    while True:        for event in pygame.event.get():            if event.type == QUIT:                pygame.quit()                sys.exit()        self.screen.fill(BACKGROUND)        self.update(self.screen)        pygame.display.update()        self.clock.tick(FPS)def gen_enemes(self):    if len(self.enemes) < self.max_enemes:        enemy = Enemy(self.enemy_image)        self.enemes.append(enemy)def is_ai_all_dead(self):    for plane in self.planes:        if plane.alive:            return False    return True

game = Game()
game.start()
game.run()

AI的工作逻辑

假设你是AI,你首先繁殖一个种群(50个个体),开始的个体大都是歪瓜裂枣(上来就被敌机撞)。但是,即使是歪瓜裂枣也有表现好的,在下一代,你会使用这些表现好的再繁殖一个种群,经过代代相传,存活下来的个体会越来越优秀。其实就是仿达尔文进化论,种群->自然选择->优秀个体->杂交、变异->种群->循环n世代。

ai开始时候的表现:

是AI就躲个飞机 - 纯Python实现人工智能图片被拉扁了 sorry
经过几百代之后,ai开始娱乐的躲飞机:

是AI就躲个飞机 - 纯Python实现人工智能

ps.祝大家新年快乐,感觉我又浪费了一年

原创粉丝点击