生成模型与判别模型

来源:互联网 发布:病毒源码记事本 编辑:程序博客网 时间:2024/05/18 03:47

监督学习方法又分生成方法(Generative approach)和判别方法(Discriminative approach),所学到的模型分别称为生成模型(Generative Model)和判别模型(Discriminative Model)

1.概念

  • 判别方法:由数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。基本思想是有限样本条件下建立判别函数,不考虑样本的产生模型,直接研究预测模型。典型的判别模型包括k近邻,感知级,决策树,支持向量机等。

  • 生成方法:由数据学习联合概率密度分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)。基本思想是首先建立样本的联合概率概率密度模型P(X,Y),然后再得到后验概率P(Y|X),再利用它进行分类,就像上面说的那样。注意了哦,这里是先求出P(X,Y)才得到P(Y|X)的,然后这个过程还得先求出P(X)。P(X)就是你的训练数据的概率分布。典型的生成模型有:朴素贝叶斯和隐马尔科夫模型等

对于一个分类任务:对一个给定的输入x,将它划分到一个类y中。那么,如果我们用生成模型:p(x,y)=p(y|x).p(x)那么,我们就需要去对p(x)建模,但这增加了我们的工作量,这让我们很不爽(除了上面说的那个估计得到P(X)可能不太准确外)。实际上,因为数据的稀疏性,导致我们都是被强迫地使用弱独立性假设去对p(x)建 模的,所以就产生了局限性。所以我们更趋向于直观的使用判别模型去分类。

2.生成模型和判别模型的优缺点

在监督学习中,两种方法各有优缺点,适合于不同条件的学习问题。

  • 生成方法的特点:上面说到,生成方法学习联合概率密度分布P(X,Y),所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。但它不关心到底划分各类的那个分类边界在哪。生成方法可以还原出联合概率分布P(Y|X),而判别方法不能。生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型,当存在隐变量时,仍可以用生成方法学习。此时判别方法就不能用。

  • 判别方法的特点:判别方法直接学习的是决策函数Y=f(X)或者条件概率分布P(Y|X)。不能反映训练数据本身的特性。但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。直接面对预测,往往学习的准确率更高。由于直接学习P(Y|X)或P(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。

3.两者联系

由生成模型可以得到判别模型,但由判别模型得不到生成模型。
比如高斯判别模型可以最终得到logistic回归模型,反之则不行,原因在于前者对于数据的分布基于强假设,实际包含了后者对于数据的假设

4.举例

再假如你的任务是识别一个语音属于哪种语言。例如对面一个人走过来,和你说了一句话,你需要识别出她说的到
底是汉语、英语还是法语等。那么你可以有两种方法达到这个目的:
1、学习每一种语言,你花了大量精力把汉语、英语和法语等都学会了,我指的学会是你知道什么样的语音对应什么样的语言。然后再有人过来对你哄,你就可以知道他说的是什么语音,你就可以骂他是“米国人还是小日本了”。
2、不去学习每一种语言,你只学习这些语言模型之间的差别,然后再分类。意思是指我学会了汉语和英语等语言的发音是有差别的,我学会这种差别就好了。那么第一种方法就是生成方法,第二种方法是判别方法

生成算法尝试去找到底这个数据是怎么生成的(产生的),然后再对一个信号进行分类。基于你的生成假设,那么那个类别最有可能产生这个信号,这个信号就属于那个类别。判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类

5.总结

生成算法尝试去找到底这个数据是怎么生成的(产生的),然后再对一个信号进行分类。基于你的生成假设,那么那个类别最有可能产生这个信号,这个信号就属于那个类别。判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类。